Life of Fred® Geometry Expanded Edition

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

Note to Students

ne day in the life of Fred. A Thursday just after his sixth birthday. In the few hours of that one day, you will experience a full course in geometry. Everything's here: the formulas, the definitions, the theorems, the proofs, and the constructions.

WHAT YOU'LL NEED TO HAVE

You will need at least one year of high school algebra. (*Life of Fred: Beginning Algebra Expanded Edition*)

In this geometry book for example, on p. 26 we will go from

y + y = z to $y = \frac{1}{2} z$.

It is preferable, however, that you have completed the two years of high school algebra. (*Life of Fred: Beginning Algebra Expanded Edition* and *Life of Fred: Advanced Algebra Expanded Edition*)

Most schools stick geometry between the two years of algebra—beginning algebra, geometry, advanced algebra—but there are a couple of reasons why this is not the best approach.

First, when you stick geometry between the two algebra courses, you will have a whole year to forget beginning algebra. Taking advanced algebra right after beginning algebra keeps the algebra fresh.

Second, the heart of geometry is learning how to do proofs. This requires an "older mind" than the mechanical stuff in the algebra courses. A person's brain develops in stages. Most three-year-olds don't enjoy quiz shows on television. Most ten-year-olds are not "interested" in the opposite sex.

Here is the better sequence of high school math courses: beginning algebra advanced algebra *Geometry* trig. Geometry is one course that is different from all the rest. In the other courses, the emphasis is on calculating, manipulating and computing answers.

In arithmetic, you find 6% of \$1200. In beginning algebra, you solve $\frac{x^2}{x+2} = \frac{8}{3}$

In advanced algebra, you use logs to find the answer to: *If my* waistline grows by 2% each year, how long will it be before my waist is one-third larger than it is now? (Taken from a Cities problem at the end of chapter three in *Life of Fred: Advanced Algebra Expanded Edition*.)

In trigonometry, you find the five different answers to $x^5 = 1$.

And then in calculus, you find the arc length of the curve $y^2 = 4x^3$ from x = 0 to x = 2. [From a Cities problem at the end of chapter 17 in *LOF: Calculus.*]

The answer, in case you're wondering, is $(2/27)(19^{3/2} - 1)$.

And then in linear algebra, which follows calculus, you will solve systems of many equations with many unknowns.

In contrast, in geometry there are proofs to be created. It is much more like solving puzzles than grinding out numerical answers. For example, if you start out with a triangle that has two sides of equal length, you are asked to show that it has two angles that have the same size.

There are at least four different ways to prove that this is true. The proof that you create may be different than someone else's. Things in geometry are much more creative than in the other courses. It was because of the fun I experienced in geometry that I decided to become a mathematician.

The surprising (and delightful) truth is that geometry is much more representative of mathematics than are arithmetic, beginning algebra, advanced algebra, trig, or calculus. Once you get beyond all the "number stuff" of those courses, math becomes a playground like geometry. On page 216 I describe eight (of the many) math courses that you can take as a college student after calculus. All of them have the can-you-find-a-proof spirit that geometry has.

THE USUAL SUPPLIES FOR GEOMETRY

Besides a bit of algebra, you'll need the usual supplies for geometry:

✓ maybe your old hand-held calculator with +, –, ×, ÷, and $\sqrt{-}$ keys on it.

The paper, pencil and ruler you probably already have. A compass may cost you a dollar or two.

If you're super rich and you want to blow another buck for a protractor, that's your choice. You won't really need one for this course.

WHAT YOU'LL NEED TO DO

Throughout this book are sections called *Your Turn to Play*, which are opportunities for you to interact with the geometry. Complete solutions are given for all the problems in the *Your Turn to Play* sections.

If you really want a solid grounding in geometry, just reading the problems and then just reading the solutions in the *Your Turn to Play* sections without working them out for yourself really won't work.

You have to haul out a sheet of paper and work out each problem on that sheet—and then look at the answer.

Some students have confessed that they just can't help "accidentally" looking at the answers to the *Your Turn to Play* questions that are given right below the questions. This is a question of dealing with temptation. The simple solution is to put a piece of paper over the answers so that you won't accidentally see them.

But what, you the reader ask, if the paper slips and I accidentally see the answer?

Then hire some nasty 250-pound man who will <u>make sure</u> your paper doesn't slip.

At the end of each chapter are six sets of questions, each set named after a city in the United States. You may not have heard of some of the cities such as Elmira or Parkdale, but they all really exist. All of the answers are supplied right after the questions.

WHAT THIS BOOK CONTAINS

This book has *all* of high school geometry. Look over the Table of Contents (and the index) and you will find that it's all there.

In addition to the material for the average student there are six "Other Worlds" chapters (which are chapters $5\frac{1}{2}$, $7\frac{1}{2}$, $8\frac{1}{2}$, $11\frac{1}{2}$, $12\frac{1}{2}$ and $13\frac{1}{2}$) that offer you an ultra-complete honors course in geometry. For example, chapter $8\frac{1}{2}$ is an introduction to symbolic logic. Chapter $11\frac{1}{2}$ covers non-Euclidean geometry. Chapter $13\frac{1}{2}$ deals with flawless, modern geometry. (Traditional Euclidean geometry has flaws in it.) Near the back of the book, on p. 533, is the **A.R.T.** section (All **R**eorganized **T**ogether). The **A.R.T.** section lists all the theorems, definitions, and postulates in the order they are encountered in this book.

And *Life of Fred: Geometry Expanded Edition* tells the tale of one of the greatest love stories in world literature.

Contents

Chapter 1	Points and Lines
	line segments
	collinear points
	concurrent lines
	midpoint
	circular definitions
	undefined terms
	postulates and theorems
	coordinates of a point
Chapter 2	Angles
	rays
	Euclid's Elements
	acute, right, and obtuse angles
	congruent angles
	degrees, minutes, and seconds
	vertical angles
	supplementary angles
	linear pair
Chapter 3	Triangles
-	right triangles, hypotenuse, and legs
	acute and obtuse triangles
	isosceles triangles
	scalene triangles
	SSS, SAS, ASA postulates
	drawing auxiliary lines
	equilateral and equiangular triangles
Chapter 4	Parallel Lines
	coplanar and skew lines
	indirect proofs
	exterior angles

Chapter 5	Perpendicular Lines
	theorems, propositions, lemmas, and corollaries
	Hypotenuse-Leg Theorem
	perpendicular bisectors
	distance from a point to a line
Chapter 5 ¹ / ₂	Chain the Gate
	P & Q ("and")
	$P \lor Q$ ("or")
	$P \rightarrow Q$ ("implies")
Chapter 6	Ouadrilaterals
enapter o	parallelogram
	tranezoid
	rhombus
	kite
	rectangle
	square
	Honors Problem of the Century
	midsegment of a triangle
	interconted segments
	intercepted segments
Chapter 7	Area
	triangles
	parallelograms
	rectangles, rhombuses, and squares
	perimeter
	trapezoids
	polygons
	Pythagorean Theorem
	Heron's formula
	triangle inequality
Chapter $7\frac{1}{2}$	Junior Geometry and Other Little Tiny Theories 288
	three-point geometry
	models for axiom systems
	group theory
	group meory

Chapter 8	Similar Triangles
	generalization of the Midsogment Theorem
	altitudae
	Angle Disactor Theorem
	Angle Disector Theorem
Chapter 8 ¹ / ₂	Symbolic Logic
	If ••• then ••• statements
	contrapositive
	¬P ("not" P)
	truth tables
	transitive property of \rightarrow
	tautology
Chapter 9	Right Triangles
	mean proportional (= geometric mean)
	three famous right triangles:
	3-4-5
	45°-45°-90°
	30°-60°-90°
	adjacent, opposite, hypotenuse
	tangent function (from trigonometry)
Chapter 10	Circles
1	center, radius, chord, diameter, secant, tangent
	concentric circles
	central angles
	arcs
	inscribed angles
	proof by cases
	circumference
	π
	inductive and deductive reasoning
	hunch, hypothesis, theory, and law
	sectors

Chapter 11	Constructions
	compass and straightedge
	rules of the game
	rusty compass constructions
	golden rectangles and golden ratio
	trisecting an angle and squaring a circle
	incenter and circumcenter of a triangle
	collapsible compass constructions
	46 popular constructions
Chapter 11 ¹ / ₂	Non-Euclidean Geometry
	attempts to prove the Parallel Postulate
	Nicolai Ivanovich Lobachevsky's geometry
	consistent mathematical theories
	Georg Friedrich Bernhard Riemann's geometry
Chapter 12	Solid Geometry
	a line perpendicular to a plane
	distance from a point to a plane
	parallel and perpendicular planes
	polyhedrons
	hexahedron (cube)
	tetrahedron
	octahedron
	icosahedron
	dodecahedron
	Euler's Theorem
	volume formulas
	Cavalieri's Principle
	lateral surface area
	volume formulas: cylinders, prisms, cones, pyramids, spheres
Chapter 12 ¹ / ₂	Geometry in Four Dimensions
1	how to tell what dimension you live in
	how two-dimensional people know that there is no third
	dimension
	getting out of jail

	organic chemistry and why you don't want to be flipped in the
	fourth dimension
	tesseracts and hypertesseracts
	the Chart of the Universe (up to 14 dimensions)
Chapter 13	Coordinate Geometry
	analytic geometry
	Cartesian/rectangular/orthogonal coordinate system
	axes, origin, and quadrants
	slope
	distance formula
	midpoint formula
	proofs using analytic geometry
Chapter 13 ¹ / ₂	Flawless (Modern) Geometry 503
_	proof that every triangle is isosceles
	proof that an obtuse angle is congruent to a right angle
	19-year-old Robert L. Moore's modern geometry
	∃ ("there exists")
	e, π and $\sqrt{-1}$
	\forall ("for all")
 .	
A.R.T. section	a (a quick summary of all of geometry)
Index.	

Chapter One Points and Lines

red's two little eyes popped open. It was several minutes before dawn on an early spring morning. He awoke with a smile. There were so many things for which to be grateful. He ticked them off in his mind one by one.

✓ He was home, safe and sound.

- \checkmark It was Thursday—one of his seven favorite days of the week.
 - ✓ He had received a wonderful pet llama at his sixth birthday party last night.

✓ His math teaching position at KITTENS University.

What a wonderful life! was his morning prayer. He stood up and stretched to his full height of thirty-six inches. Fred's home for the last five years or so was his office on the third floor of the math building at the university. By most standards he had been quite young when he first came to KITTENS.

Years ago, when he had arrived at the school, they had assigned him his office. He had never had a room of his own before. He was so tuckered out from all the newness in his life (a new job, a new state to live in, a new home) that he had just closed the door to his office and found a nice cozy spot (under his desk) and had taken a nap.

And every night since then, that is where he slept.

He had the world's shortest commute to work. And no expenses for an apartment or a car.

"Good morning Lambda!" he said to his llama. He had named her Lambda in honor of the Greek letter lambda (λ). He

enjoyed the alliteration of "Lambda the llama."

She was busy chewing on the wooden fence that he had erected in his office.

"Would you like to get out and get some exercise with me?" he continued. Fred hopped into his jogging clothes. The pair headed down the two flights of stairs and out into an icy Kansas morning.

Fred was worried that his new pet wouldn't be able to keep up with him as he jogged. He had been jogging for years and running 15 or 20

Chapter One Points and Lines

miles was nothing for him. Fred's fears, however, were unfounded. His six-foot-tall llama had no trouble matching the pace of Fred's little legs.

In fact, after a few minutes, Lambda spotted the new bocci ball

lawn and raced ahead to enjoy some breakfast. By the time Fred caught up to her, she had mowed a straight line right across the lawn. Fred's little snacks that he had given her last night had left her hungry.

Oh no! Fred thought. Larry is gonna be mad. He put a lot of effort into that lawn. The international bocci ball tournament is scheduled to be here next week.

"Lambda, please come here. You're not supposed to be on Mr. Wistrom's lawn."

She, being a good llama,

obeyed. On her way back to Fred she munched a second line in the grass. Fred loved his pet and didn't know that

he was supposed to discipline her. Besides, he thought to himself those are such nice parallel lines.

Actually, to be perfectly accurate, those are line segments he corrected

Parallel lines

himself. A line segment is just part of a line. It has two endpoints. A line is infinitely long in both directions. Anybody who's studied geometry knows that. Fred enjoyed the precision that mathematical language afforded him.

Who could discipline such a lovely creature?

When Fred drew lines on the blackboard in his geometry class, he'd put arrows on ends to indicate that the lines went

on forever. He labeled lines with lower case letters.

Chapter One Points and Lines

To draw a line segment was easy. You didn't need any arrows.

Line segment \overline{AB} with endpoints A and B

Points like A and B are written with capital letters, and lines like l and m are written with lower case letters.

 \overline{AB} is the notation for the line segment with endpoints A and B.

 \overrightarrow{AB} is the notation for the line which contains A and B.

Line $\stackrel{\longleftrightarrow}{AB}$ which passes through A and B

And just to make things complete: AB is the *distance* between points A and B. That makes AB a number (like six feet) whereas \overline{AB} and \overrightarrow{AB} are geometrical objects (a segment and a line).

little by just reading the questions and then glancing at the answers.

..... COMPLETE SOLUTIONS

1. If you phone a travel agency and ask how far it is between San Francisco and Yosemite National Park, they might say something like 209 miles. If you phone them the next day and ask them how far it is from Yosemite National Park to San Francisco, they would again say 209 miles. The distance between two points is never negative. So the answer to question 1 might be something like -5 or -978267 or $-\pi$ or $-\sqrt{7}$. It could be zero since the distance from San Francisco to San Francisco is zero. In symbols, it's always true that AA = 0.

2. On this map of

Kansas, the distance

from Garden City to

Colby is about the same

as the distance from

Garden City to Hays.

Those three cities are

not collinear.

(Collinear = lie on the

same line.)

3. It is true that DE + EF = DF (which states that the distance from D to E plus the distance from E to F is equal to the distance from D to F). We can add numbers together. But \overline{DE} isn't a number. It's a line segment which is a geometrical object. The only thing we know how to add are numbers. Could you add Martin Luther and pizza? Could you divide the Red Cross by a stop sign?

Similarly, you can't draw AB since AB is a number (the distance between points A and B).

4. Suppose for a moment that H weren't on the line that passes through G and I.

To say that GH + HI = GI is to say that the journey from G to H and then to I is the same distance as the journey from G straight to I. That's nonsense unless H is on the road from G to I. Namely, H is between G and I.

If H isn't between G and I, then the side trip to H always takes longer. If H isn't between G and I, then GH + HI > GI. (> is the symbol from algebra for *greater than*.)

We have arrived at:

<u>Definition 1</u>: H is **between** G and I if and only if GH + HI = GI.

Some notes about definition 1:

J#1: The word we're defining is in **boldface type**.

J#2: Every definition in mathematics has the phrase "if and only if" in it. That means in the case of this definition that:

I) If H is between G and I then it's true that GH + HI = GI, and

II) If GH + HI = GI, then H is between G and I.

Either part of the definition implies the other part.

J#3: Later on in geometry when we're doing a proof and we know, for example, that AB + BC = AC, then we can say, "B is between A and C" and give as a reason, "By the definition of between."

J#4: Definitions are entirely optional. We could do all of geometry without using a single definition. However, we use definitions to *make our lives easier*. We could always talk about "the geometrical object consisting of three non-collinear points A, B and C and the line segments \overline{AB} , \overline{BC} and \overline{CA} ," but don't you think it is a lot easier if we just say "triangle ABC"? Oops! We just made our second definition in geometry. We will call it Definition 2. It is the definition of triangle ABC, which we write in symbols as ΔABC .

J#5: Since we are introducing symbols, we will write "H is between G and I" as G-H-I.

J#6: If G and H are the same point, then GH = 0 and G-H-I. You have more than one name, don't you? A point can have more than one name.

J#7: Do you want to learn geometry? To make the whole thing a happy experience, here's a suggestion which has worked for many students over the years. Take out a sheet of paper and head it, "Definitions." There will be lots of definitions in geometry and it will be a lot easier if you copy them down as you encounter them. Then you will have them all in one place for easy reference. So far, your definitions page and symbols page would look like:

Definitions

Definition 1: H is between G and I if and only if GH + HI = GI.

Definition 2: Triangle <u>ABC</u> is defined as non-collinear points A, B and C and the line segments AB, BC and CA.

List of Symbols

Index

acute triangle
AIP Theorem 138
altitude
analytic geometry 488
angle 60, 534
acute
adjacent angles
alternate interior angles 137
angle bisector 90, 536
complementary 156, 538
congruent angles
corresponding angles 137
exterior angle 135, 537
interior
measure of an angle 60
obtuse 62
remote interior angle 131
right
sides
straight angle 60
vertical angles
Angle Addition Postulate 88
Angle Bisector Theorem 319
Archimedes
area formulas 29
Heron's formula
parallelogram
rectangle
rhombus
square
trapezoid
triangle 244
ASA 106, 537
associative law of addition 43
associative law of multiplication 43
auswendig lernen 80

auxiliary

segments, lines, rays 109
Babylonians 67
between
CAP Theorem 141, 142
cardioid
Cartesian coordinate system 488
Cavalieri's Principle
central angle
Chart of the Universe
chord
circle
circumference 377-379
definition of
equation of a circle
tangent
circular definitions
circumcenter of a triangle 423
circumference 377-379
collapsible compass constructions 427
collinear
commutative law of addition 43
commutative law of multiplication 43
concentric circles
conclusion
concurrent
lines
planes 467, 553
congruent
angles 64
segments 65
congruent triangles 101
construction
rusty compass
the rules
contrapositive

converse 36, 109, 115, 116, 142, 156
of Isosceles Triangle Theorem 110
coordinate of a point
coplanar
corollary 88, 142, 169
corresponding angles 137
Descartes, René 488
diameter
distance formula
in five dimensions 499
distance from a point to a line 181
distributive property
dodecahedron
dogs
eccentricity of an ellipse 303
endpoints 19
engineers v. mathematicians 520
equiangular
Euclid
Euler's Theorem
Exterior Angle Theorem 131, 132,
135
strong form 151-153
foot of a perpendicular
geometric mean 426
Goldbach's "Theorem" 227
golden ratio 414
golden rectangle 413, 414
graphing
group theory
H-L Theorem (Hypotenuse-Leg) 172,
175
hexahedron 450
Hilbert, David 512
homochirality
how to tell what dimension you live in
hyperbole
hypotenuse
hypothesis
icosahedron

iff
incenter of a triangle 422, 550
inductive and deductive reasoning 389
hunch/hypothesis/theory/law 390
swans
inscribed angle of a circle 369
intercept
irony
Isosceles Triangle Theorem 109
a second proof
a third proof
converse
ITT
kite
legs
lemma 169
limit of function f(x) as x approaches a
line segment
linear pair of angles 73, 535
lines
parallel
perpendicular
skew 121, 443, 445, 552
locus of points 500, 554
logically equivalent
<i>Lysistrata</i> 119
major arc
measure of a major arc 369
Maslow, Abraham 495
mathematical theory
consistent
models
palm tree illustration 34, 129
tall and slender
mean proportional
median 113, 180, 423, 537, 551
midpoint formula
midsegment
Midsegment Theorem 212, 541
converse

measure of minor arc
minutes
<i>Moby Dick.</i>
models
Modus Ponens
Moore, Robert L 511
mutatis mutandis
obscurantism 53
obtuse angles 62
octahedron
opposite rays 55, 56
orthogonal coordinate system 488
"Ozymandias" 355
PAI Theorem 141, 142
Parallel Postulate 128
parallelogram 195
area
perimeter
perpendicular
perpendicular bisector
Perpendicular Bisector Theorem
180, 540
poetry
enjambment
feet
Fred's
point
a picture of one
polygon
definition of exterior 258
definition of interior
regular polygon
polyhedron
interior of a polyhedron 458
Pons Asinorum
postulate
definition of
list of the first 13
Postulate 1
Two points determine a line 33

Postulate 2 39
Ruler Postulate 41
Postulate 3
Angle Measurement Postulate 60
Postulate 4
linear pair implies supplementary
Postulate 5
Angle Addition Postulate 88
Postulate 6
SSS 103
Postulate 7
SAS 105
Postulate 8
ASA 106
Postulate 9
Parallel Postulate 128
Postulate 10
Area Postulate 256, 542
Postulate 11
congruent triangles have equal areas
Postulate 12
Area Addition Postulate 256, 543
Postulate 13
area of a square
Postulate 14
AA 304
Postulate 15
three noncollinar points determine
a plane
Postulate 16
Flat Plane Postulate 445, 552
prime numbers 227, 228
prism 457
volume 459
proof
by cases
indirect proof 123
outline of a proof or sketching a
proof 182

possible reasons 124, 130
the two rules for a valid proof 80
proportions
extremes
five favorite tricks
geometric mean
interchanging the extremes 308
means
proposition
protractor
pyramid
Pythagorean Theorem 276, 489, 543
converse
Garfield's proof
quadrant
radian measurement
radius
ray
rectangle
area 245
rectangular coordinate system
reflexive law of equality 170
regular polygon 378
remote interior angle
rhombus 183 195
area 245
right angle 61
right triangle 94
$30^{\circ}-60^{\circ}-90^{\circ} \text{ triangle} \qquad 341$
3_{-4-5} right triangle 340
45° right triangle 340
hypotenuse 94
Three Famous Right Triangles
340
rusty compass construction 410
sea chanty 276
secant 262 5/5
secant line 20
seconds (77
seconds0/

sector
segment
congruent segments 65
endpoints
semicircle
semiperimeter
Seven Wonders of the Ancient World
460
Shelley, Percy Bysshe 355
similar
triangles
sphere
equation of a sphere 497
surface area 466
square 196
area
square the circle
SSS 103
stereochemistry 479
supplement
supplementary angles 73, 535
symmetric property of equality 44
tangent function
table
tautology
tesseract
tetrahedron
<i>The Elements</i> 51
theorem
def of
theory
palm tree illustration 34
transitive law
transitive law of equality 43, 143
Transitive Property of Congruent Angles
Theorem 143, 538
transversal
trapezoid
area
isosceles 196

triangle

acute triangle 97, 536
area
circumcenter 423
congruent
equilateral 112, 537
incenter 422
isosceles triangle
obtuse triangle 97, 536
scalene triangle
triangle inequality 282, 543
trisect an angle 416
truth tables
for \lor ("or")
for "not" 330
for & 331
for →
valid arguments 332
undefined terms 31
vertex
of a triangle
of an angle
Vertical Angle Theorem 82
vertices
volume formulas
cone
cylinder 459
prism 459
→ ("implies")
∨ ("or")