Life of Fred® Advanced Algebra Expanded Edition

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

What Is in Advanced Algebra?

Il kinds of stuff. It's the second half of algebra. You've seen the first half, and therefore, things like 2x = 14 are not very scary anymore. This is the rest of high school algebra. After completing this book, you will have all the algebra you need for college calculus. The only two other math courses needed for calculus will be a geometry course (with an emphasis on doing proofs) and a trig course.

In beginning algebra we've already done most of the classic word problems such as . . .

JENNIFER CAN DIG A DITCH IN 4 HOURS. JASON CAN DIG IT IN 5 HOURS. IF THEY WORK TOGETHER HOW LONG WILL IT TAKE?

or

JASON RUNS DOWN THE HALL AT 5 MPH. WHEN HE'S 50 FEET AWAY, JENNIFER RUNS AFTER HIM AT 6 MPH. HOW LONG BEFORE THEY'RE HAPPY?

We've already learned 94.7% of factoring. The only thing left is the factoring of $x^3 + y^3$, which is $(x + y)(x^2 - xy + y^2)$ and the factoring of $x^3 - y^3$, which is $(x - y)(x^2 + xy + y^2)$. Oops! I guess you've just finished factoring.

You've gone through the agony of learning to add algebraic fractions:

 $\frac{x+2}{x+5} + \frac{x+1}{x+4} = \frac{(x+2)(x+4)}{(x+5)(x+4)} + \frac{(x+1)(x+5)}{(x+4)(x+5)} = \frac{(x+2)(x+4) + (x+1)(x+5)}{(x+4)(x+5)}$

and the terror of the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The further you go in math, the less memorizing and the less computational cookbook stuff you encounter. You will find that *understanding* rather than just being a good tape recorder starts to matter more.

In Fred's everyday life in this book, he runs into things that would baffle a beginning algebra student. For example, in Chapter 3 you learn how to solve $2^x = 5$. In Chapter 6 you learn how to battle the dreaded Snow King using a Waddle-Ray which can be obtained at your local doughnut store. In Chapter 9 we add up an infinite number of numbers, such as 1/2 + 1/6 + 1/18 + 1/54 + ..., and we get an answer! A finite answer. Not your usual old stuff.

We are often asked for the Big Overview: What is ahead and which order to study the subjects.

After learning arithmetic and pre-algebra, the steps are:

(Statistics may be taken before Calculus.)

And now the scary question . . .

Here are some questions taken from *Life of Fred: Beginning Algebra*. The answers are given on the next two pages. This will give you an indication of whether you are ready for advanced algebra.

Beginning Algebra Quiz

1. If two sets have the same number of elements in them, are they equal? (from Chapter 1)

2. If the diameter of a circle is exactly 4 feet (that would make a nicesized pizza), what is the exact circumference? (from Chapter 2)

3. We need 30 cc of 25% cough medicine. In the medicine cabinet was a solution that was too weak. It contained only 20% of the cough medicine by volume. Another bottle was too strong. It contained 35% cough medicine by volume. How much of each of these bottles should be mixed together to obtain 30 cc of 25% cough medicine? (Chapter 3)

4. Plot $y = x^2$. (Chapter 5)

5.
$$(y^{20})^3 = ?$$
 (Chapter 6)

6. Factor
$$6x^2 + 29x + 35$$
 (Chapter 7)

7. Simplify
$$\frac{x^2 - xy + 3x - 3y}{x^2 - 2xy + y^2}$$
 (Chapter 8)

8. Solve
$$\sqrt{2y-3} + 3 = y$$
 (Chapter 9)

9. Solve
$$5x^2 = -4x + 13$$
 (Chapter 10)

10. What is the equation of the line whose graph is (Chapter 11)

element in the domain, pretend it is the radius of a pizza and would be mapped to the area of the pizza (by the formula $A = \delta r^2$). So 5 would be mapped to 25 δ . Is this a function? (Chapter 11)

12. Solve 48 - 3x > 36 (Chapter 12)

Answers to the Beginning Algebra Quiz

1. No. Two sets are equal if they have the same elements in them. For example, $\{\varpi, \end{pmatrix}$ is equal to $\{ \vartheta, \varpi \}$. The sets $\{ \# \}$ and $\{ \text{pen} \}$ have the same number of elements in them, but they are not equal.

2. 4ð feet The formula relating the diameter of a circle and its circumference is $C = \delta d$. If d = 4, then $C = 4\delta$.

3. Let x = the number of cc of the 20% medicine used.

Then 30 - x = the number of cc of the 35% medicine used (since we have to make up a total of 30 cc of medicine).

Then 0.20x = the amount of cough medicine taken from the 20% bottle. Then 0.35(30 - x) = the amount of cough medicine taken from the 35% bottle.

The total amount of medicine needed is 25% of 30 cc, which is 7.5 cc.

The equation then is 0.20x + 0.35(30 - x) = 7.5

Solving, we obtain x = 20 cc of the 20% medicine.

Then 30 - x = 10 cc of the 35% medicine.

4. This can be done by point-plotting. Three steps: 1. name x values 2. find the corresponding y values 3. plot those points until you have enough

of them to "connect the dots."

5.
$$(y^{20})^3 = y^{60}$$
 by the rule $(x^a)^b = x^{ab}$

6.
$$6x^2 + 29x + 35 = (3x + 7)(2x + 5)$$

7.
$$\frac{x^2 - xy + 3x - 3y}{x^2 - 2xy + y^2} = \frac{(x - y)(x + 3)}{(x - y)(x - y)} = \frac{x + 3}{x - y}$$

8. y = 6. y = 6. $\sqrt{2y-3} + 3 = y$ $\sqrt{2y-3} = y-3$ isolating the radical $2y-3 = y^2 - 6y + 9$ squaring both sides y = 6 OR y = 2 solving by factoring y = 6 checks in the original problem.

y = 2 doesn't check in the original problem.

9. First place $5x^2 = -4x + 13$ into the form $ax^2 + bx + c = 0$ and then use the quadratic formula. $x = \frac{-4 \pm \sqrt{16} - (4)(5)(-13)}{10} = \frac{-4 \pm \sqrt{276}}{10}$ and if you (optionally) simplified $\sqrt{276} = \sqrt{4}\sqrt{69} = 2\sqrt{69}$, then your final answer would be $x = \frac{-2 \pm \sqrt{69}}{5}$ 10. y = (3/7)x + 2 The slope of the line is 3/7 and its y-intercept is 2. The slope-intercept form of a line is y = mx + b where m = 3/7 and b = 2.

11. 25ð is not a rational number. Therefore, this is not a function. A function, by definition, maps each element of the domain to exactly one element of the codomain. 25ð is not in the codomain.

12. 48-3x > 36Subtract 48 from both sides -3x > -12Divide both sides by -3 x < 4(When you multiply or divide an inequality by a negative number, you have to change the sense of the inequality: > becomes < .)

small essay Being Happy in Math

One important part of success in math is working at the right place in your math education. Right now, 2 + 2 = 4 would bore the socks off of you and $\int_{x=0}^{1} \cosh x \, dx$ might just be a little too much. (That last thing is from fourth semester calculus.)

You just took the beginning algebra quiz. Do you want to be happy? It's important you are working at the right place. If you took some wishywashy beginning algebra course and you got only seven or eight questions right on this quiz, then the smart thing to do would be to grab a copy of *Life of Fred: Beginning Algebra Expanded Edition* and zip through the 104 lessons before starting this book.

end of small essay

A. Note to Students

Fred has just received an honorable discharge from the army and is taking the bus home to KITTENS University in Kansas. You are about to join him on that bus ride.

On the two-day ride you will experience all of advanced algebra—everything you will need to know before studying trigonometry and calculus. You will have it all.

The supplies you'll need for the trip:

- 1. pencil or pen
- 2. paper

3. a handheld calculator that has the keys: \sin , \log , !, and y^x . This is the last calculator that you will ever need. You can usually find them for \$15 or less. Stop! Last week I was in one of those stores that sell everything for a dollar and found one of those calculators for a buck.

You will not need a "graphing calculator." I don't even own one, and I do a lot of math.

When I studied algebra, my teacher told the class that we could reasonably expect to spend thirty minutes per page to master the material in the old algebra book we used. With the book you are holding, you will need two reading speeds: slower when you're learning algebra and faster when you're enjoying the life adventures of Fred.

Throughout the book are sections called *Your Turn to Play* and Cities, which are opportunities for you to interact with the material. Just reading the problems and reading my solutions doesn't work. You have to do them. Education *does* take effort.

Our story begins at noon on Monday and ends on Tuesday evening. Each lesson is a day's work. After 10 chapters you will have mastered all of advanced algebra.

Just before the Index, the **A.R.T.** section begins. **A.R.T.** = All Reorganized Together. This section very briefly summarizes advanced algebra. If you have to review for a final exam or want to quickly look up some topic ten years after you've read this book, the **A.R.T.** section is the place to go.

Contents

Chapter 1	Ratio, Proportion, and Variation
	Lesson 1: Ratios, Median Averages, Proportions
	Lesson 2: Solving Proportions by Cross-Multiplying
	Lesson 3: Constants of Proportionality
	Lesson 4: Inverse Variation
	Lesson 5: The Biology of Height
	Lesson 6: The First City
	Lesson 7: The Second City
	Lesson 8: The Third City
Chapter 11/2	Looking Back
	Lesson 9: The Laws of Exponents
	Lesson 10: $\sqrt{xy} = \sqrt{x} \sqrt{y}$, Rationalizing Denominators
	Lesson 11: Solving Radical Equations
Chapter 2	Radicals
_	Lesson 12: Surface Area of a Cone
	Lesson 13: A Story: The History of Mathematics
	Lesson 14: A Ten-Ton Nickel
	Lesson 15: The First City
	Lesson 16: The Second City
	Lesson 17: The Third City
Chapter 2 ¹ /2	Looking Back
-	Lesson 18: Venn Diagrams and Sets
	Lesson 19: Venn Diagrams and Counting Problems
	Lesson 20: Significant Digits
Chapter 3	Logarithms
	Lesson 21: Setting up Exponential Equations
	Lesson 22: The Birdie Rule (the Power Rule)
	Lesson 23: Solving Exponential Equations
	Lesson 24: The Power and Quotient Rules
	Lesson 25: Finding Antilogs
	Lesson 26: First Definition of Logs
	Lesson 27: Second Def. of Logs, Change-of-Base
	Lesson 28: Third Definition of Logs

	Lesson 29: The First City
	Lesson 30: The Second City
	Lesson 31: The Third City
Chapter 3 ¹ /2	Looking Back
	Lesson 32: Graphing by Point-Plotting
	Lesson 33: Graphing Terminology
Chapter 4	Graphing
-	Lesson 34: Slope
	Lesson 35: Finding the Slope Given Two Points
	Lesson 36: Slope-Intercept, Double-Intercept Forms
	Lesson 37: Point-slope and Two-point Forms
	Lesson 38: The Slopes of Perpendicular Lines
	Lesson 39: The First City
	Lesson 40: The Second City
	Lesson 41: The Third City
Chapter 41/2	Looking Back
	Lesson 42: Multiplying Binomials
	Lesson 43: Common Factors
	Lesson 44: Easy Trinomials, Difference of Squares
	Lesson 45: Grouping
	Lesson 46: Harder Trinomials
	Lesson 47: Simplifying Fractions
	Lesson 48: Adding and Subtracting Fractions
	Lesson 49: Multiplying and Dividing Fractions
	Lesson 50: Linear, Fractional, Quadratic Equations
	Lesson 51: Radical Equations
Chapter 5	Systems of Equations
-	Lesson 52: Systems of Equations
	Lesson 53: Graphing Planes in Three Dimensions
	Lesson 54: Cramer's Rule
	Lesson 55: 2×2 Determinants
	Lesson 56: 3×3 Determinants
	Lesson 57: The First City
	Lesson 58: The Second City
	Lesson 59: The Third City

Chapter 6	Conics
-	Lesson 60: Ellipses
	Lesson 61: Circles
	Lesson 62: A Definition of Ellipse
	Lesson 63: Reflective Property of Ellipses
	Lesson 64: Parabolas
	Lesson 65: Hyperbolas
	Lesson 66: Graphing Inequalities
	Lesson 67: The First City
	Lesson 68: The Second City
	Lesson 69: The Third City
Chapter 7	Functions
- T	Lesson 70: Domain. Codomain. Def. of Function
	Lesson 71: Is This a Function?
	Lesson 72: $f(x)$ and $f:A \rightarrow B$ notation
	Lesson 73: One-to-one and Inverse Functions
	Lesson 74: Guess the Function
	Lesson 75: The Story of the Big Motel
	Lesson 76: Onto Functions, 1-1 Correspondences
	Lesson 77: Functions as Ordered Pairs, Relations
	Lesson 78: The First City
	Lesson 79: The Second City
	Lesson 80: The Third City
Chapter 7½	Looking Back 404
Chapter 772	Lesson 81: Degrees of Terms and of Polynomials
	Lesson 82: Long Division of Polynomials
Chapter 8	Linear Programming, Partial Fractions, Math Induction, 411
enapter	Lesson 83: Partial Fractions
	Lesson 84: Proofs by Math Induction
	Lesson 85: First Part of Linear Programming
	Lesson 86: Second Part of Linear Programming
	Lesson 87: The First City
	Lesson 88: The Second City
	Lesson 89: The Third City

Chapter 9	Sequences, Series, Matrices
-	Lesson 90: Arithmetic Progressions
	Lesson 91: Adding and Multiplying Matrices
	Lesson 92: Geometric Sequences
	Lesson 93: Geometric Progressions, Sigma Notation
	Lesson 94: The First City
	Lesson 95: The Second City
	Lesson 96: The Third City
Chapter 10	Permutations and Combinations
	Lesson 97: The Fundamental Principal of Counting
	Lesson 98: Permutations
	Lesson 99: Combinations
	Lesson 100: The Binomial Formula
	Lesson 101: Pascal's Triangle
	Lesson 102: The First City
	Lesson 103: The Second City
	Lesson 104: The Third City
The Hardest P	roblem in Advanced Algebra 526
	Lesson 105: Six Kinds of Waddle Doughnuts
A.R.T. (All Re	corganized Together)
Solution to the	e Hardest Problem in Advanced Algebra
Index	

Chapter One

Lesson One—Ratios, Median Averages, Proportions

red looked out the bus window. The cold, white Texas landscape might have seemed bleak to many people, but to him it was a joy. He was heading north—back to his home in Kansas.

He thought about the last four days. Friday had been his sixth birthday. So much had happened since then: his "abduction" into the army, all the new friends he had met, his hurt rib, and his honorable discharge.*

nto s g clock ffice or tural

view from the window

Now he could look out at the passing telephone poles and just imagine them as a clock ticking away the hours till he reached his office at KITTENS University (Kansas Institute for Teaching Technology, Engineering and Natural Sciences), where he has lived for the last five years.

It would be good to get out of his hospital nightshirt with the little blue and green frogs all over it. Tomorrow would be Tuesday and maybe by then his rib wouldn't hurt so badly. With a good night's sleep and a fresh bunch of clothes, he'd meet his 8 a.m. class.

The telephone poles whooshed by, one after another. He looked out of the bus window and unconsciously began to count them: five poles passed for every three beats of his heart. (He could feel his pulse as little stings in his hurt rib.) The **ratio** of the passing poles to the heartbeats was 5:3. Ratio means division, so 5:3 could also be written as $5 \div 3$.

His eyes began to close, shutting out the snowy scene. A little nap would help pass the time. Five-thirds would become ten-sixths would become fifteen-ninths. He'd soon be asleep.

"Hey! How old are you?"

Fred was startled by the half-shouted question. He received a little poke in the ribs and then he was fully awake.

"I said how old are you," the little girl repeated.

"I'm six. I just turned six last Friday."

^{*}This story is told in Life of Fred: Beginning Algebra

Chapter One Lesson One—Ratios, Median Averages, Proportions

She said, "Oh" and ran to her friends in the back

of the bus. They were all about four years old and were all dressed identically in gray-brown dresses. They giggled and chattered.

Fred might easily have been mistaken for a four-year-old. He had always been less than the **median** weight for his age. (The median weight means that half the people are heavier and half the people are lighter than that weight. The median is one of the three kinds of averages studied in beginning statistics.) Fred, at 37 pounds, was definitely less than the median weight for his age. Maybe only 4% of boys his age weighed less than he did.

He noticed that the ratio of the telephone poles that the bus was passing to his pulse was now 5:4. His heart was beating more quickly. Getting awakened with a question and a poke would cause most people's hearts to beat faster.

 O_h well he thought, and after a few moments he began to drift back to sleep.

He could hear her coming. Some little girl running up the aisle to his seat. It was a different girl than the first one. Instinctively, he put his arms around his ribs to protect them against further assault.

"What's your name?" she blurted. She had been sent on a mission to find this out.

Fred, who had read all the James Bond books, thought of answering Gauss, Fred Gauss but instead he simply said, "Fred."

"Oh" was her only response, and she ran to the back of the bus to report her findings to her girlfriends.

Fred was so used to being around the students at KITTENS that these four-year-olds seemed to him to be so . . . he couldn't think of the word. They seemed to be so *immature*.

A woman, also wearing one of the gray-brown uniform dresses, came up to Fred and smiled. "Hi. My name is Cheryl Mittens. I hope my little girls haven't been bothering you."

"Not too much. Could you tell me what's going on? Are they just playing or something?"

"Well, you might call it that," Cheryl said. "They're working on earning a badge for their uniforms. It's the Getting-to-Know-People badge. The first requirement is to learn to make contact with some fellow that they want to get to know."

"Oh," said Fred. (He was starting to sound like the girls.) "But I'm 50% older than these girls." (He had done the math in his head: $4 \times 1.50 = 6$.) Fred thought to himself It's a little early for those girls to be thinking about finding a husband. "I read in a marriage manual that the prospective bride should be at least 90% of the age of the groom. That

would make the ratio of their ages 9:10. Right now, the ratio of their ages to mine is 4:6."

Cheryl laughed. "I guess you're right. The girls aren't thinking about marriage right now. And don't worry. They'll never be 90% of your age."

Fred's heart raced at the thought of marriage to one of those *children*. Maybe he'd be lucky and he'd be a hundred years old before they were grown up enough to be of the appropriate age. Then he wondered how long it really would be before they were 90% of his age—before the ratio of their ages to his age was 9:10. He let x

equal the number of years from now until that happened. In x years, the girls would be 4 + x years old and he would be 6 + x years old. In x years, the ratio

4 + x : 6 + x would be the same as 9:10.

$$\frac{4+x}{6+x} = \frac{9}{10}$$

Two ratios set equal to each other is called a **proportion**. When we solved fractional equations in beginning algebra, we found an expression that all the denominators would evenly divide into and multiplied every term by that expression. In this case 10(6 + x) will do the trick:

$$\frac{(4+x)\mathbf{10(6+x)}}{6+x} = \frac{9\cdot\mathbf{10(6+x)}}{10}$$

The denominators disappear (4 + x)10 = 9(6 + x)

Be warned: This book might be a little out-of-date.

Chapter One Lesson One—Ratios, Median Averages, Proportions

Distributive property	40 + 10x = 54 + 9x	the distributive property
		$\mathbf{a}(\mathbf{b}+\mathbf{c})=\mathbf{a}\mathbf{b}+\mathbf{a}\mathbf{c}$
Subtract 9x from each side	40 + x = 54	
Subtract 40 from each side	$\mathbf{x} = 14$	

So in 14 years (which would make the girls 18 and Fred 20), they would be 90% of his age.

Gasp! Fred thought to himself. That's way too soon. He wanted to wait until he was at least 50 before he'd have to think about such things.

He needed to change the subject. "These girls are too young to be Girl Scouts, but they're wearing some kind of uniform. Are they part of some group?" he asked.

Mrs. Mittens replied, "They're even too young for Blue Birds. My three daughters, Fredrika, Meddie, and Rita, and all their girlfriends in the neighborhood, have made up a little club and I'm their club leader. We call ourselves the Dust Bunnies. That's why our uniforms are grayishbrown."

small essay

Life

Life is painful. The only choice you have is how you want to take the pain.

You can take the pain now. It will be short and sharp. And it will end.

You can avoid the pain now. It will come later. It will be a dull pain that will last and last.

Taking out a piece of paper and writing your answers is pain now. Not learning the math well now and getting "lost" later in the book is pain later.

end of small essay

Please take out a sheet of paper and write your answers to the *Your Turn to Play* on the next page before you look at my answers.

You will learn a lot more than if you just read the question and read the answer.

Your Turn to Play

1. Which is larger: 6:5 or 9:8?

2. In some of the old math books they used to write a proportion as 2:3::6:9. What would the double colon in the middle represent?

3. When Fred first counted the ratio of passing telephone poles to his heartbeats, he found it was 5:3. Suppose the driver of the bus increased his speed. What might the new ratio look like?

4. As Fred was counting the ratio of passing telephone poles to his heartbeats, suppose (Heaven forbid!) his heart stopped beating.

 \checkmark The bus driver wouldn't like this because he would have to stop the bus and do some heart surgery or something.

 \checkmark The readers of the advanced algebra book wouldn't like it because the book would end too soon.

✓ Mathematicians wouldn't like it because the resulting ratio is 5:0. Why would they object?

5. Solve
$$\frac{x+3}{x+13} = \frac{3}{5}$$

6. The bus driver is 25 years old. The bus is 35 years old. How long will it be before the driver is 75% of the age of the bus?

What is the median average of:
 5, 8, 9, 9, 10, 14, 18, 19, 19?

Chapter One Lesson One—Ratios, Median Averages, Proportions

$$\frac{25 + x}{35 + x} = 75\%$$

$$\frac{25 + x}{35 + x} = \frac{3}{4}$$

$$\frac{(25 + x)4(35 + x)}{35 + x} = \frac{3(4)(35 + x)}{4}$$
Multiply both sides
by 4(35 + x)
(25 + x)4 = 3(35 + x)
(25 + x)4 = 3(35 + x)
100 + 4x = 105 + 3x
Distributive property
x = 5 years

7. The median average of 5, 8, 9, 9, 10, 14, 18, 19, 19 is the number in the middle when they are all arranged in order of size. In this case it is 10.

Index

abscissa 180, 530
absolute value
addends
adding and subtracting fractions
228-231
age word problem 45, 49, 52
all-night Armadillo Dance Party
Alice in Wonderland41
alliteration
antilog 151, 152
Argand diagram 88, 107
arithmetic sequence
last term formula 462
arithmetic series = arithmetic
progression 460, 464
last term formula 462
sum formula 462
Bertrand Russell
big numbers
binomial expansion 515, 516
binomial formula.
birdie rule (logs) 132, 147
chained arrow notation 433
change-of-base rule (logs)
circle
coelacanth 109
combinations 503-506, 534
common factors 215, 217, 529
common logs 158, 160

complex fractions
complex numbers 114, 531
conic or conic section
(definition) 332, 528
constant of proportionality30
constant of variation
constellations (all of them)
conversion factors 92, 95, 98
countably infinite
Cramer's rule 262-264, 537
cross multiplying 24
degree of a polynomial 404
degree of a term 404
dependent equations
determinants
disjoint sets 108
distance between two points
192, 204, 307, 531
division by zero
double-intercept form of a line
194, 204, 531
dummy variable 485
ellipse 293-296
foci
reflective property 312, 313
semi-major axis, semi-minor
axis
vertices
English Lesson
varies directly/inversely/jointly
expanding by minors 269, 270

exponent laws
exponential equation 129
how to solve 135, 142
exponential growth
vs. an S curve 128
extraneous answers 68, 69
extraneous roots
factorial 493, 496, 497, 534
factoring by grouping
factoring difference of squares
factoring easy trinomials
factoring harder trinomials
factoring sum and difference of
cubes
fifty-foot tall Rita 41-44
five ways to learn
fractional equations.
235, 237-241, 529
function
as ordered pairs 392, 393
codomain
create a function 350
definition
domain
examples 347, 352-355
$f: A \rightarrow B$ notation
359-360
guess-the-function game
371-373, 392, 396
identity function 394
image
inverse function 363

one-to-one functions	362
onto functions	384
pre-image	387
range of a function	355
fundamental principle of	000
counting 490, 499.	534
gamma function	494
geometric sequence 473.	535
last term formula	473
geometric series =	
geometric progression	
	535
sum formula	476
graphing a plane in three	
dimensions 258-	-260
graphing inequalities	
325-327,	531
strict inequalities	327
Greek alphabet	349
Guess-the-Function game	
371-373,	392
hardest problem in advanced	
algebra.	526
harmonic progression	484
"History of Mathematics"	
a true fairytale 7	7-89
Hooke's law	. 51
hyperbola 320-	-324
asymptotes 321,	323
vertices	334
iff	166
imaginary numbers 114,	531
inconsistent equations	253
independent and dependent	
variables	199

infinite geometric progressions
sum formula 487
integers
interior decoration
intersection of sets 108, 111
inverse function 152
irony129
Jeanette MacDonald 402
lateral surface area
linear equation
linear programming 531
all three steps—an overview
① constraints 432, 433, 435
² objective function 447
3 test the vertices
logarithm
erase-the-base approach
first definition158
second definition161
third definition 165
logarithmic equation 153, 155
long division of polynomials
math induction proofs
matrix
adding 467, 468
dimensions
multiplying 469
rows and columns 467
median average
metonymy 126, 138

midpoint of a segment formula
minors in determinants 270
multiplying and dividing
fractions 232-234
multiplying binomials
212-214, 529
natural numbers
Omar Khayyam 300
one-to-one correspondences
one-to-one functions 362
onomatopoeia 489
onto functions
ordered pair
ordered triple 179, 180
ordinate
origin
parabola 277, 280, 315-318
vertex
partial fractions 413-418, 533
Pascal's Triangle 517, 518, 533
permutations 497, 498, 534
the formula
pi ð 2,000 digits 123
point-plotting 175, 176
point-slope form of the line
power rule (logs) 131, 132
pre-image
principal square root94
product rule (logs)
proportion 19, 535
pure quadratic74

pure quadratics
Pythagorean theorem 61, 66
quadrants
quadratic equations by factoring
quadratic formula 150, 236
found by completing the
square
quotient rule (logs) 145, 147
radical equation 67
three steps to solve 69
radical equations. 242-248, 534
ratio
rational numbers
rationalizing the denominator
real numbers
reciprocal
relation
scientific notation
second relativity equation
semi-major axis, semi-minor axis
sentences—the four types 249
sigma notation 478, 479
significant digits 118-124, 535
in computation 122, 123
simplifying fractions
slope
given two points
188-190, 192
slope of perpendicular lines
201-204, 531

slope-intercept form of a line
Sluice
small essay: "Life" 20
square root laws 60, 61
standard form for the circle
standard form for the ellipse
standard form for the hyperbola
Stokes's theorem 275
subscripts
subset 112, 492
superscripts
surface area of a cone73, 103
system of equations 251, 536
Cramer's rule 262-264, 537
elimination method251
graphing method251
tachyon
taking notes
"The Big Motel" story
376-379
three equations and three
unknowns257, 258
Cramer's rule 262-264
"Trees" by Joyce Kilmer 200
two-point form of the line
union of sets 108, 111
unit analysis
"Unselfish Love" by Rita 438
varied inversely 33, 535
Venn diagrams 107-117, 355

Venn diagrams and counting
problems 112-114
ventral surface of four-legged
creatures
whole numbers

To learn about other books in this series visit

LifeofFred.com

You have mastered all of high school algebra.

Only two courses remain: ➤ Life of Fred: Geometry ➤ Life of Fred: Trigonometry.

You will then have everything necessary to do mathematics at the university level. Translation: You will be ready for college calculus.