Life of Fred Statistics

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

Statistics

ecisions! Decisions! Do you attend Harvard University or KITTENS University? Do you marry this person or not? Does your pizza company continue the television advertising which features the "Pizza for People Who Like to Canoodle" slogan?

Success in life is 90% making the right decisions in the first place. And only 10% carrying out those decisions.

People with good decision-making skills are rare. They are also the most valuable persons in any business, any army or any orchestra. These CEOs, generals and conductors all have the same job: they take massive amounts of data and boil them down to yes-or-no decisions.

- \checkmark Shall we sell all the stock we own? (It's September 1929.)
- \checkmark Shall we launch the invasion today? (It's June 6, 1944.)
- ✓ Shall we send our orchestra on a worldwide tour this month? (It's early December 1941.)

And where there are numbers involved, statistics is an important aid in making good decisions. At its best, statistics is a way of melting down a heap of numerical data into a simple yes or no. *It's a way of getting rid of numbers!*

If you really hate to see big piles of numbers, you and statistics were made for each other.

A Note to Students

ne morning in the life of Fred. A Saturday just after his sixth birthday. In his everyday life Fred will run into the need for every kind of statistics. Each time we do a little statistics, we see how it helps him get through his morning.

HOW MUCH STATISTICS IS COVERED IN THIS BOOK? We start at the beginning with simple descriptive statistics

(averages, standard deviation, etc.) and then do some probability, including conditional probability with Bayes' Theorem.

Next comes inferential statistics—the heart of statistics—in which we study a zillion* different procedures. We describe each in detail and tell you when and where each test is appropriate. You get plenty of worked-out examples for each test.

All the popular tests such as the Normal Distribution and the Chi-Squared Test are included. Many advanced tests such as the Kolmogorov-Smirnov Test and the Two-Factor ANOVA for multiple observations per cell are covered. When the Chi-Squared Test won't work because the sample sizes are too small, we turn to Fisher's Exact Test. Most beginning statistics books don't include that test.

We have one test *that no other statistics book mentions*—at least not until future authors copy it out of this book. It deals with A SMALL SAMPLE FROM A BINOMIAL DISTRIBUTION. Suppose, for example, a new species of fish is discovered in the ocean and of the first ten caught, three had red fins. What is the number of red-finned fish you might expect if you caught 10,000? [Answer: 95% of the time, you would expect between 1093 and 6096.] This question would stump most statistics teachers (who don't have a copy of this book).

After the descriptive and inferential statistics, we spend the last hour or so of Fred's morning working with regression equations including nonlinear curve fitting and logistic regression.

This book has much more material than is normally covered in a beginning university statistics course.

^{★ 46} by actual count

HOW THEORETICAL IS THIS BOOK? Life is practical. This is a book that will teach you how to *do*

statistics—lots of it. Even if you are going to get a Ph.D. in statistics and are dying to go through tons of theory and proofs, your first logical step should be to learn how to do the various tests. Then, in a later course, the proofs would be appropriate. In beginning algebra, for example, you were first told that a negative number times a negative number gives a positive answer. Later, you may have seen the proof.

In this book you learn how to perform the Kruskal-Wallis Test for three or more independent samples, but we're not going to fill up the pages with a proof.

There are two exceptions. The first is a little three-line proof of Bayes' Theorem, which is so cute that I couldn't resist including it. And the second is the underpinnings of the SMALL SAMPLE FROM A BINOMIAL DISTRIBUTION TEST that I mentioned on the previous page. Since no other book has this test, I placed this material in its own separate little chapter (Chapter $5\frac{1}{2}$) and laid out the reasoning to show why this test works. This little chapter is the only place in the book in which there is any calculus. And even here, the calculus is very basic. It deals with the area under a curve described by a polynomial. If you go directly from Chapter 5 to Chapter 6 and bypass Chapter $5\frac{1}{2}$, you will be protected from all calculus.

In doing their proofs, some books go nuts with subscripts and primes and "hats" and Greek letters. They wind up with expressions like $\hat{y}'_{i,j} + \varepsilon$, which certainly don't help anyone's digestion. Those things are kept to a minimum in *Life of Fred: Statistics*. [\hat{y} is read "y-hat."]

WHAT BACKGROUND DO I NEED?

It would be nice to have a little algebra so that x^2 and absolute

values and square roots don't mystify you. But that's about it. I can't think of anywhere in the book where you'll need to solve any equations or do any algebra word problems.**

We'll use the greater than sign (>) and plus-or-minus (\pm).

[★] None of those old word problems like: JACKIE IS CHASING DALE DOWN THE HALL WITH AN AX. JACKIE IS TRAVELING 7 FT/SEC AND DALE IS RUNNING AT 5 FT/SEC. THEY ARE 8 FEET APART. HOW SOON SHOULD DALE START APOLOGIZING?

See if these all make sense to you:

 $7^2 = 49$

 [-3] = 3

 64 > 29

 7 ± 2 means 5 or 9.

 13

 Using your calculator $\sqrt{3}$ gives 1.7320508.

If so, you are ready.

DO I NEED A COMPUTER?

No.

DO I NEED A GRAPHING CALCULATOR? No. All you need is a handheld calculator that has keys like sin.

cos, and log. Those calculators don't cost that much. Certainly under \$20. (I have seen them under \$10.) In a couple of years they will probably be included free in cereal boxes.

ANY SPECIAL SUGGESTIONS BEFORE I START CHAPTER ONE? Yes. I have a couple of ideas.

First, in each chapter there are *Your Turn to Play* sections. These have representative problems along with completely worked-out solutions. Please solve these problems before you glance at the solutions. Just reading the problems and eyeballing the solutions is a real temptation for some readers, but unless you're smarter than Einstein, you won't learn much doing that.

At the end of each chapter are six sets of exercises which I call Cities. The first two Cities have all the answers supplied. The second pair of Cities have answers to all the odd-numbered problems. If you want to learn statistics, please do all these problems for which I have given the answers.

Second, I need to know if you are in a real hurry.

If that's the case, then don't start by turning to the first page of Chapter One, or to the Table of Contents or to the Index.

Instead, turn to the Emergency Statistics Guide which begins on p. 326. The Emergency Statistics Guide will tell you:

 $(\ensuremath{\underline{1}})$ what test to use,

⁽²⁾ where to find an explanation of the test as it occurred in Fred's

life,

③ where it's listed in the Field Guide and④ what table to use.

The Emergency Statistics Guide will move you from baffled to brilliant in twelve seconds flat.

Contents

Chapter 1	Descriptive Statistics
T	frequency distributions
	scatter diagrams
	averages—mean, median and mode
	linear regression
	populations vs. samples
	histograms
	range
	percentiles, deciles, quintiles, quartiles
	variance
	sigma notation
	standard deviation for populations and for samples
	distributions—skewed, platykurtic, leptokurtic, bimodal
Chapter 2	Probability
enupter 2	outcomes
	sample space
	events—independent, complements, mutually exclusive
	Venn diagrams
	venn diagrams
Chapter 3	Conditional Probability
1	$\mathscr{D}(A \mid B)$ notation
	definition of conditional probability
	Bayes' Theorem and its proof
	generalized Bayes' Theorem
	generalized zwyes interion
Chapter 3 ¹ / ₂	Looking Forward to the Next Four Chapters
	the Future—zero samples
	the Past—one sample
	the Present—two samples
	the Present—three or more samples
Charten 4	The Entre Zere Semular
Chapter 4	The Future—Zero Samples
	Poisson distributions
	e
	factorial
	continuous vs. discrete variables
	exponential distributions-three forms
	permutations and combinations
	Bernoulli variables
	binomial distributions
	hypergeometric distributions
	multinomial distributions

	extended hypergeometric distributions
	normal distributions—Gaussian distributions
	normal curves to approximate binomial distributions
Chapter 4 ¹ / ₂	The Art of the Sample
	null hypothesis—H ₀ the problem of induction—Hume's problem
	the problem of small samples
	type I and type II errors
	levels of significance
	The Ten Rules of Fair Play
	data mining, cherry picking, data snooping pilot samples
	alternative hypotheses
	one-tail vs. two-tail propositions
	dealing with sensitive questions in a survey
	dealing with bad luck in surveys
	simple random surveys
	systematic samples
	cluster sampling
	stratified samples
	outliers
	statistical significance vs. actual significance
	13 alternatives to saying " H_0 is tenable."
Chapter 5	13 alternatives to saying "H ₀ is tenable." The Past—One Sample 145
Chapter 5	
Chapter 5	The Past—One Sample145
Chapter 5	The Past—One Sample
Chapter 5	The Past—One Sample 145 why no one knows what time it is Normal Distributions—large samples, but a small part of the population z-scores determining sample size confidence intervals Central Limit Theorem point estimates Wald confidence intervals vs. Agresti-Coull confidence intervals finite population correction factors Normal Distributions—large samples that are a large part of the population
Chapter 5	The Past—One Sample 145 why no one knows what time it is Normal Distributions—large samples, but a small part of the population z-scores determining sample size confidence intervals Central Limit Theorem point estimates Wald confidence intervals vs. Agresti-Coull confidence intervals finite population correction factors Normal Distributions—large samples that are a large part of the population Student's t-Distribution
Chapter 5	The Past—One Sample 145 why no one knows what time it is Normal Distributions—large samples, but a small part of the population z-scores determining sample size confidence intervals Central Limit Theorem point estimates Wald confidence intervals vs. Agresti-Coull confidence intervals finite population correction factors Normal Distributions—large samples that are a large part of the population Student's t-Distribution Lilliefors test for normality Lilliefors test for normality
Chapter 5	The Past—One Sample 145 why no one knows what time it is Normal Distributions—large samples, but a small part of the population z-scores determining sample size confidence intervals Central Limit Theorem point estimates Wald confidence intervals vs. Agresti-Coull confidence intervals finite population correction factors Normal Distributions—large samples that are a large part of the population Student's t-Distribution Lilliefors test for normality standardizing data
Chapter 5	The Past—One Sample 145 why no one knows what time it is Normal Distributions—large samples, but a small part of the population z-scores determining sample size confidence intervals Central Limit Theorem point estimates Wald confidence intervals vs. Agresti-Coull confidence intervals finite population correction factors Normal Distributions—large samples that are a large part of the population Student's t-Distribution Lilliefors test for normality standardizing data cumulative normal frequency Cumulative normal frequency
Chapter 5	The Past—One Sample 145 why no one knows what time it is Normal Distributions—large samples, but a small part of the population z-scores determining sample size confidence intervals Central Limit Theorem point estimates Wald confidence intervals vs. Agresti-Coull confidence intervals finite population correction factors Normal Distributions—large samples that are a large part of the population Student's t-Distribution Lilliefors test for normality standardizing data cumulative normal frequency Wilcoxan Signed Ranks test—the Median test
Chapter 5	The Past—One Sample 145 why no one knows what time it is Normal Distributions—large samples, but a small part of the population z-scores determining sample size confidence intervals Central Limit Theorem point estimates Wald confidence intervals vs. Agresti-Coull confidence intervals finite population correction factors Normal Distributions—large samples that are a large part of the population Student's t-Distribution Lilliefors test for normality standardizing data cumulative normal frequency Wilcoxan Signed Ranks test—the Median test uniform distributions
Chapter 5	The Past—One Sample 145 why no one knows what time it is Normal Distributions—large samples, but a small part of the population z-scores determining sample size confidence intervals Central Limit Theorem point estimates Wald confidence intervals vs. Agresti-Coull confidence intervals finite population correction factors Normal Distributions—large samples that are a large part of the population Student's t-Distribution Lilliefors test for normality standardizing data cumulative normal frequency Wilcoxan Signed Ranks test—the Median test

	power of a test
	data-nominal, ordinal, interval, ratio
	parametric vs. nonparametric statistics
	Sign test for nominal data
	Kolmogorov-Smirnov goodness-of-fit test
	for uniform distributions
	for normal distributions
	Chi-Squared test
	for goodness-of-fit test
	the Lie Detector test
	is-the-sample-too-variable test
	sequences—random, cyclical, trends
	Runs test
Chapter 5 ¹ / ₂	Secrets of the Binomial Proportion
、	we determine the confidence interval for π , the proportion of "good" items in the underlying population
	a small history of the problem
	Monte Carlo method
	the journal article (from <i>The Journal of Fredometrika</i>),
	which describes a new approach to the problem
Chapter 6	The Present—Two Samples
	paired samples
	Two Paired Samples $(\mu_1 - \mu_2)$ test
	Wilcoxon Signed Ranks test for two paired samples
	Signs test for two paired samples
	Signs test for paired samples of Hot & Cold
	Two Proportions with 2 samples in 2 categories
	independent samples
	Two Large Independent Samples test
	Two Independent samples when σ_1 and σ_2 are known
	<i>F</i> -Distribution test
	Two Small Independent Samples test where the populations are normal and the standard deviations are roughly equal
	Two Small Independent Samples test where the populations
	are roughly normal but the standard deviations are quite
	different from each other (a. k. a. the Smith-Satterthwaite test)
	Mann-Whitney test
	Chi-Squared test for 2 samples in many categories
	contingency tables
	one sample with two variables
	Chi-Squared test with Yates Correction for 2 samples in 2 categories
	Fisher's Exact test for 2 samples in 2 categories

Chapter 7	The Present—Many Samples266One-Way ANOVA test for independent samplesweighted averagesPost-test for One-Way ANOVA for independent samplesOne-Way ANOVA for matched samples (blocked samples)Post-test for One-Way ANOVA for matched samplesTwo-Factor ANOVA with one observation per cellPost-test for Two-Factor ANOVAANOVA tablesTwo-Factor ANOVA with several observations per cellKruskal-Wallis testPost-test for Kruskal-WallisChi-Squared test for nominal data, three or more samplescorrelation vs. causation
Chapter 7 ¹ / ₂	Emergency Statistics Guide
Chapter 8	Finding Regression Equations
The Field Gui	de
	sample will look like. You start with zero samples.
	Hypergeometric Distribution
	Extended Hypergeometric Distribution Binomial Distribution
	Multinomial Distribution
	Poisson Distribution

Exponential Distribution Normal Distribution

Past—The sample is known and you want to know what the population was that gave this sample. You start with one sample. Normal Distribution—n > 30 and the sample is small compared with the population. Normal Distribution—n > 30 and the sample is large compared with the population. Student's t-Distribution Binomial Distribution (large sample, n > 30) Binomial Distribution (small sample, $n \le 30$) Kolmogorov-Smirnov goodness-of-fit test Lilliefors test Wilcoxon Signed Ranks test Sign test—Does the population have that median? Sign test for Nominal Data Chi-Squared test (goodness of fit) Chi-Squared test (Lie Detector) Chi-Squared test (Is the population too variable?) Runs test Present—You start with two samples and want to know how do they compare with each other. Two Paired Samples $(\mu_1 - \mu_2)$ Wilcoxon Signed Ranks test Sign test for two paired samples Sign test for two paired samples of nominal data. Two Proportions in two categories. Two Large Independent Samples, $n \ge 30$ Two Independent Samples (σ_1 and σ_2 known) *F*-Distribution test Two Small Independent Samples, roughly equal standard deviations Two Small Independent Samples (Smith-Satterthwaite) with very different standard deviations. Mann-Whitney test (a.k.a. Wilcoxon Rank-Sum test) Chi-Squared test (χ^2), two samples of nominal data in multiple categories. One Sample with Two Variables Chi-Squared test (χ^2)—Yates Correction Fisher's Exact test

Present—You start with three or more samples and want to know how *do* they compare with each other.

One-Way ANOVA (independent samples) Post-test for One-Way ANOVA (independent samples) One-Way ANOVA (matched samples)
Post-test for One-Way ANOVA (matched samples)
Two-Factor ANOVA (one observation per cell)
Post-test for Two-Factor ANOVA (one observation per cell)
Two-Factor ANOVA (multiple observations per cell)
Kruskal-Wallis test
Post-test for Kruskal-Wallis
Chi-Squared (χ²), three samples of nominal data

Binomial Coefficients Table A Table B Kolmogorov-Smirnov (one sample) Table C Standard Normal Curve (area from 0 to z) Table D Standard Normal Curve (area from $-\infty$ to z) Table E Standard Normal Curve (area from -z to z) Table F Student's t-Distribution Table G Lilliefors Table H Wilcoxon Signed Ranks Table I Sign test Chi-Squared (χ^2) Table J Table K Runs test Table L Mann-Whitney (Wilcoxon Rank-Sum) Fisher's Exact test Table M Table N *F*-Distribution Table O Kruskal-Wallis test Table P **Binomial Proportion Intervals**

Chapter One Descriptive Statistics

ink! Fred's eyes popped open. He had just heard one of the sweetest sounds. He looked at his watch. 4:13 A.M. With his mouth open, he listened in the dark. Tink! Yes, he thought to himself, it's happened. Tink!

Drops of water were falling from the ceiling. Fred threw off his bedcovers and emerged from under his desk. He looked at the pot on his desktop and saw three drops of water. Tink! Make that four drops.

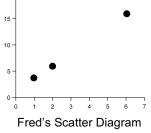
His watch clicked over to 4:14 A.M. and he smiled as six more drops fell into the pot. It's a little early to telephone Alexander, Fred thought, but it won't hurt if I email him. Fred rolled up his three-foot sleeping bag and put it in the closet. He turned on the computer, changed out of his pajamas, turned off his nightlight, and looked out the window. From the window in his office/home he could look out over the university campus. For the first time in months, the sky was inky black and filled with stars. It was a welcome change from what he called the "dodo bird" sky of Kansas in winter.

From September through May, the cloud cover always reminded Fred of the soft, gray feathers of that extinct bird.

He opened the window and felt a warm breeze. So much to be grateful for. I teach at a wonderful university. I have my health. I have wonderful friends like Alexander and Betty. Fred uttered the prayer that God most likes to hear ("Thank you") and then turned to his computer that was in the final stages of booting up. He put three phone books on a chair and hopped on top of them. When you're only six years old and 36 inches tall, you need to make those kinds of adjustments in order to sit at a big-people's desk.

On a clipboard he wrote out a little frequency distribution showing	time	no. of drops
the data he had collected so far: But that looked much too	4:13	4
"numbery" for Fred's taste. He liked to keep things simple. Instead of	4:14	6

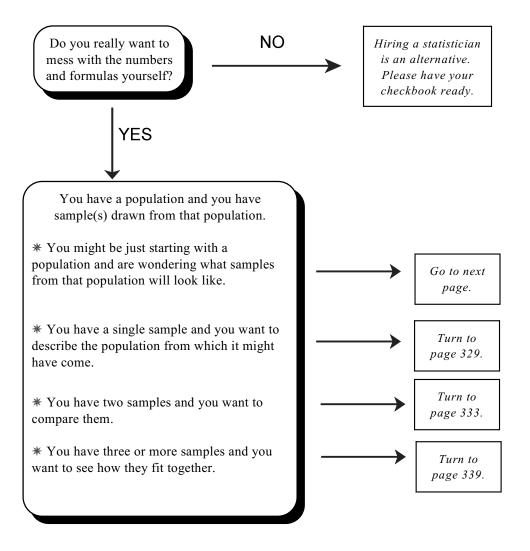
4:13 A.M., Fred wrote "1" to stand for the first minute of spring, and "2" for the second minute.	time	no. of drops
His frequency distribution looked much nicer now:	1	4
	2	6


He stared at the computer screen.

Three operating systems had been loaded, the anti-virus program and the anti-spam programs were activated, and the screen colors were being adjusted to match the university colors, and now the Internet service provider was being dialed.

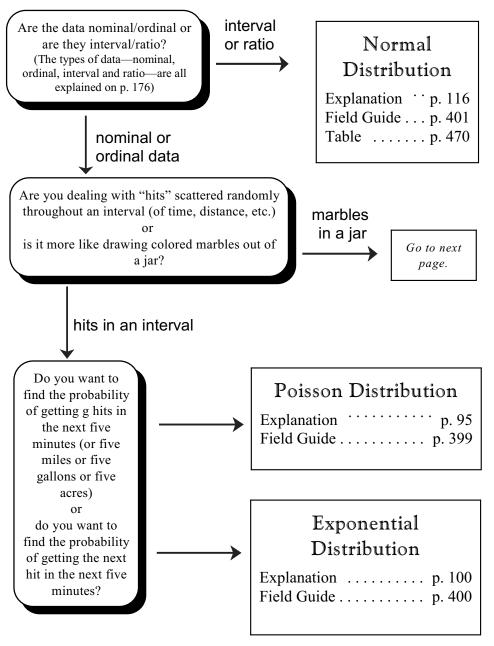
Fred had a very new machine (it was a gift from his students), but the university had very old phone lines. "ISP IS NOT RESPONDING" appeared on his screen. "ERROR 397 THE NUMBER IS BEING REDIALED."

Fred went back to looking at the pot. It was 4:19 A.M. and during that minute Fred counted 16 drops coming from the ceiling into his pot. His screen flashed, "LOCAL NUMBER IS UNAVAILABLE. THE NEVADA NUMBER IS BEING DIALED." Fred went back to counting. Twenty drops came in the next minute. "THE NEVADA NUMBER IS BUSY. URUGUAY IS BEING DIALED."

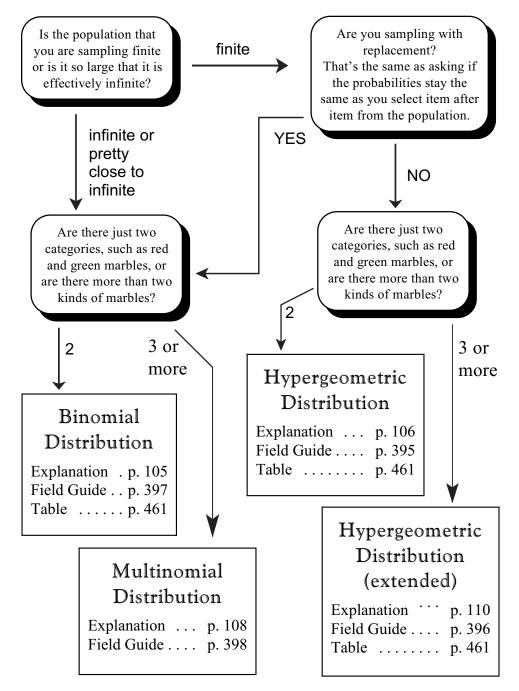

Fred went back to his clipboard and expanded his frequency distribution:	time	no. of drops
T	1	4
To pass the time waiting for his computer,	2	6
he drew a little graph.	6	16
²⁰]	7	20

A bunch of dots on a graph (where paired observations are plotted) is called a **scatter diagram**.)

uick! No time to wade through a table of contents or an index. Do you use the Kolmogorov-Smirnov one-sample test or do you perform a Chi-Squared test? Should you resort to the Wilcoxon Signed Ranks test? Or two-factor ANOVA?


Just answer these questions and follow the arrows. You'll learn exactly which statistics procedure you'll need.

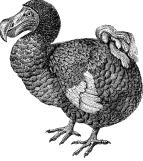
From the previous page.


You have a population and you want to know what samples from this population *will* look like.

We call this the Future. You are starting with zero samples.

From the previous page.

You are drawing colored marbles out of a jar.



Field Guide

ield guides can be fun. When you're out tromping in the woods and spot this large, flightless bird. You want to know what it is. Your hiking companion remarks, "It ain't a chicken, but it looks like good eating."

You pull out your Acme Field Guide to Birdies and read aloud, "RAPHUS CUCULLATUS: length is about three feet. Soft, gray feathers. Forest-dwelling. Female lays one egg in a bed of grass. Used to live in Mauritius."

"That's fine," your friend says as he takes aim with a rock. "That thing can't even fly. Did you bring your cookbook?"

dodo bird

"Stop!" you exclaim. "We really don't want to kill that dodo. My field guide says that they became extinct in 1693. We could make a zillion dollars if we capture this guy alive."

See how handy a field guide can be?

And if you had a field guide for geography, you could locate Mauritius. It's east of Madagascar. And Madagascar is a large island in the Indian Ocean. And the Indian Ocean is east of the southern part of Africa.

All of which forms the perfect segue (SEG-way, a smooth transition) to our Field Guide to Statistics. Our "birds" are divided into three different types. These

three types of statistical maneuvers are called the Future, the Past, and the Present. Each of them will answer a particular type of question.

The Future begins with a known population. With these procedures we will be able to predict what a sample from this population will look like.

The Past begins with a given sample. We look at the sample and try to describe what *was* the population that generated that sample.

The Present begins with two or more samples and learns how these samples *fit* in the general scheme of things.

Field Guid	le
Fisher's Exact	Test
Type of Test □ "Future"—Population known. What <i>will</i> the san □ "Past"—Sample known. What <i>was</i> the populat ⊠ "Present"—Multiple samples. How <i>do</i> they fit?	ion that gave this sample?
Type of data ⊠ Nominal—3 wins, 2 loses □ Ordinal—freshman, sophomore, junior, senior □ Interval—temperature □ Ratio—\$6, \$7, \$23	Special Features Fisher is used when the Chi- Squared won't work because the samples are too small—even after you have combined samples and categories down to a 2×2 contingency table.
Variables You Know In attempting to use the χ^2 test, you have combined samples and categories and still have too few items of data in a 2 × 2 contingency table: w x y z w, x, y and z are numbers	What You Can Find Out What is the probability that the two populations are alike?
The Procedure Step 1: Interchange the rows and/or interchange the upper left-hand box is the smallest of the four numb Step 2: If the number in the upper right-hand box is lower left-hand box, interchange the two numbers. Step 3: Your contingency table will now look like where $A \le B \le C$ and $A \le D$. With these values of A, B, C and D, consult Table M (on p. 499) for the exact probability that the	bers. s greater than the number in the A B C D
Example In competition, Stanthony's Veal Pizza has 3 times. His Linguini-and-Antelope Pizza has work times. At the 5% significance level are these two profix of winning awards? $\begin{pmatrix} 6 & 3 \\ 2 & 8 \end{pmatrix}$ interchanging rows $\begin{pmatrix} 2 & 8 \\ 6 & 3 \end{pmatrix}$ interchanging upper right/low So A = 2, B = 6, C = 8, and D = 3. Table M states the samples were drawn from the same population. confidence level we could not say that the two pizz winning awards.	$\begin{array}{l} 2 \ Grand \ awards \ and \ lost \ 8 \\ izzas \ different \ in \ their \ likelihood \\ wer left \ \begin{array}{c} 2 \ 6 \\ 8 \ 3 \\ there \ is \ a \ 0.0549 \ probability \ that \\ That \ exceeds \ 5\%. \ At \ the \ 95\% \end{array}$

Index

adjusted coefficient of multiple
determination
Agresti-Coull confidence interval 153
ANOVA table
antilog
average
mean
median
mode
bad luck
Bayes' Theorem
generalized
proof
bell-shaped curve 49
Bernoulli variable 104, 204, 373
bimodal
binomial distribution 105, 397
for proportions
small sample 204
Central Limit Theorem 150
Chi-Squared test
combining categories
goodness-of-fit test 187, 416
Is the sample too variable? 193,
418
Lie Detector 191, 417
three or more samples 307, 457
two samples in many categories
Yates correction for 2 samples in 2
categories 253, 436
cluster sampling 138
coefficient of determination 349
coefficient of multiple determination
coincidences
combinations 103, 269
complement of an event
Concatenation does not imply causation
conditional probability
confidence level 128
contingency table 245
continuous variables

correlation coefficient 346
cumulative normal frequency 167
cyclical sequences 193
data
four types 176
interval 176
nominal
ordinal 176
ratio
data mining 130
decile
design variable
dichotomous variable 358
discrete variables
dummy variable
e
Emergency Statistics Guide 326
event in a sample space
complement
independent events 58, 75
intersection of two events 65
mutually exclusive
union of two events
exponential distribution 100, 400
second form 101
third form 101
extended hypergeometric distribution
F-Distribution test
factorial
Field Guide
finite population correction factor . 157
firecracker factory
Fisher, R. A
Fisher's Exact test
frequency distribution
Gaussian distribution 118, 401
Gosset, William Sealey
histogram
Hosenaufschlag Macht Geld 192
Hume's problem
hypergeometric distribution 106, 395
extended
induction

Index

inferential statistics
interval data
Journal of Fredometrika 210
Kingie 43
Kolmogorov-Smirnov goodness-of-fit
test 180, 409
for a normal distribution 184
for a uniform distribution 180
Kruskal-Wallis test 300, 453
post-test
Leibnitz Lane
leptokurtic
level of significance of a test 128
Lilliefors test for normality 164, 411
linear regression
ln x
logistic regression
Luther's Table Talk
Mann-Whitney test
maximum likelihood estimators 387
mean average
median average
mesokurtic
MLE
mode average
Monte Carlo method 207
mu
multicollinearity
multinomial distribution 108, 398
multiple coefficient of regression 354
multiple regression 353
nominal data 176
nonlinear regression 363
nonparametric statistics 177
normal distribution 115, 401
Normal Distribution—large sample,
large part of the population
Normal Distribution—large sample,
small part of the population
normal equations
null hypothesis 125
Oeuf Cubique 278
one sample with two variables 251,
435
one-tail vs. two-tail 133, 219

One-Way ANOVA test for Independent
Samples 270, 438
One-Way ANOVA test for Matched
Samples 279, 441
ordinal data
outlier
$\mathscr{P}(\mathbf{H} \mid \mathbf{V}) \dots 74$
parametric statistics
past
Pearson Product Moment Correlation
Coefficient for Sample Data
Pearson, Karl 163
percent correct predictions statistic
percentile
permutations 102
pi (for circles)
platykurtic
point estimate 152
Poisson distribution
populations vs. samples
Post-test for One-Way ANOVA for
independent samples 273,
Independent samples 273.
· · · ·
440
440 Post-test for One-Way ANOVA for
440 Post-test for One-Way ANOVA for matched samples 283, 444
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test 175 prediction interval 347, 350 present
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test 175 prediction interval 347, 350 present
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test 175 prediction interval 347, 350 present
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test 175 prediction interval 347, 350 present
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test
440 Post-test for One-Way ANOVA for matched samples 283, 444 power of a test

Index

paired samples 216
pilot samples 132
sensitive questions
stratified sample 139
systematic sample
Ten Rules of Fair Play 130
Two Large Independent Samples
Two Normal Independent Samples
with known sigmas 232, 427
Santa Clausing Village 34
saturated model
scatter diagram 22
sequence
random/cyclical/trend 193
sigma notation
Sign test
Sign test for nominal data 177, 415
Sign test for paired samples of Hot &
Cold 226, 424
Sign test for two paired samples . 223,
423
simple random sample
skewed curves 49
left
slope-intercept form
Smith-Satterthwaite test 239, 430
burglar's use of this test 240
squared multiple R 354
standard deviation
of a population
of a sample 47
standardizing the data 165
statistically significant
step down method 361
Student's <i>t</i> -Distribution 163, 404
symmetry 169
ten lollipops 204
Ten Rules of Fair Play 130
The Chart
topology 292
trends in sequences 193
Two Normal Independent Samples with
known sigmas 232
two paired samples tests—four of them