
Life of Fred
Linear Algebra

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing



A Note to Classroom Students 

and Autodidacts

I
n calculus, there was essentially one new idea.  It was the idea of the
limit of a function.  Using that idea, we defined the derivative and the
definite integral.  And then we played with that idea for two years of

calculus.
In linear algebra, we dip back into high school algebra and begin

with the idea of solving a system of linear equations like

9

 3x + 4y  =  18
  2x + 5y  =  19

and for two or three hours on a Saturday while Fred goes on a picnic, we
will play with that idea.  

9
T We can change the variables:  1 2  3x  + 4x   =  18

1 2        2x  + 5x   =  19
T  We can consider three equations and three unknowns.

� �
T  We can look at the coefficient matrix  3    4  

       2    5
T  We can consider the case in which the system has exactly one

solution (Chapter One), or when it has many solutions (Chapter Two), or
when it has no solution (Chapter Three).  

T  Etc.

Of course, the “Etc.” covers all the new stuff such as model
functions, orthogonal complements, and vector spaces.  But they are all
just ideas that you might encounter in the Kansas sunshine as you went on
a picnic.  

Enjoy!
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A Note to Teachers

I
s there some law that math textbooks have to be dreadfully serious and
dull?  Is there a law that students must be marched through linear
algebra shouting out the cadence count Definition, Theorem and Proof, 

Definition, Theorem and Proof, 

Definition, Theorem and Proof, 

Definition, Theorem and Proof, 
as if they were in the army.  If there are such laws, then

Life of Fred: Linear Algebra is highly illegal.

Besides being illegal, this book is also fattening.  Instead of
heading outside and going skateboarding, your students will be tempted to
curl up with this textbook and read it.  In 352 pages, they will read how
Fred spent three hours on a Saturday picnic with a couple of his friends.  I
think that Mary Poppins was right: a spoonful of sugar can make life a
little more pleasant.  

So your students will be fat and illegally happy.

But what about you, the teacher?  Think of it this way: If your
students are eagerly reading about linear algebra, your work is made
easier.  You can spend more time skateboarding!  

This book contains linear algebra—lots of it.  All the standard
topics are included.  A good solid course stands admixed with the fun.  

At the end of every chapter are six sets of problems giving the
students plenty of practice.  Some are easy, and some are like: 

If T , T N  0 Hom(V , V  ), and if T TN is the
identity homomorphism, then prove that T N T  
is also the identity homomorphism.

Life of Fred: Linear Algebra also has a logical structure that will
make sense to students.  The best teaching builds on what the student
already knows.  In high school algebra they (supposedly) learned how to
solve systems of linear equations by several different methods.  
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The four chapters that form the backbone of this book all deal with
systems of linear equations: 

    Chapter One—Systems with Exactly One Solution
    Chapter Two—Systems with Many Solutions
    Chapter Three—Systems with No Solution
    Chapter Four—Systems Evolving over Time

These chapters allow the students to get their mental meat hooks
into the less theoretical material.  

Then in the interlarded chapters (1½, 2½, 2¾, 3½) we build on that
foundation as we ascend into the more abstract topics of vector spaces,
inner product spaces, etc.  

Lastly, your students will love you even before they meet you. 
They will shout for joy in the bookstore when they discover you have
adopted a linear algebra textbook that costs only $49.  
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Chapter One
Systems of Equations with One Solution

    Ax = b  ( 

F
red had never really been on a lot of picnics in his life.  Today was
special.  Today at noon he was going to meet his two best friends,
Betty and Alexander, on the Great Lawn on campus, and they were

going to have a picnic.

One good thing about being at KITTENS University  is that justw

about everything imaginable is either on campus or nearby.  

Wait!  Stop!  I, your loyal reader, need to interrupt.  In your old
age, dear author, you’re getting kind of foggy-brained.  

What do you mean?

I’m reading this stuff very carefully, since it’s a math book and I
have to pay attention to every word.  Isn’t it obvious that KITTENS would
have “just about everything imaginable . . .” since you are doing the
imagining?

Good point.  I spoke the truth and plead as John Peter Zenger
pleaded.ww

I accept.  Please go on with your story.

Thank you.  

Fred knew that food is one important part of a picnic.  He picked

up the local newspaper and read . . .

w KITTENS University.  Kansas Institute for Teaching Technology, Engineering and
Natural Sciences.  

Background information: Professor Fred Gauss has taught math there for over
five years.  He is now six years old.  Betty and Alexander are students of his.  They are
both 21.  

ww In his Weekly Journal, Zenger criticized the New York governor.  Heavens!  The
government sent him to jail for libel.  He had to wait ten months for his trial.  At his
trial in 1735 he was accused of promoting “an ill opinion of the government.” 
Zenger’s defense was that what he had written was true.  The judge said that truth is no
defense in a libel case.  But the jury ignored the judge and set Zenger free.  That
marked a milestone in American law.  Truth then became a legitimate defense in
criminal libel suits in America after that trial.  In England that idea did not catch on
until the 1920s.
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                          Chapter One       Systems of Equations with One Solution    Ax = b  (

“We must picnic,” our
university president
declared in an
exclusive Caboodle
interview.

--- advertisement ---

Butter Bottom Foods
If you’re new to picnicking,
there’s nothing that beats our . . .

 Butter Bottom ’s

                 

                          Sack-o-Picnic 

                               Food 

“It’s always a better buy 

at Butter Bottom!”K

--- advertisement ---

Paw Prints Pawn
Shop

We are now accepting for pawn

all the stuff from previous manias:
Hula-Hoops™ , things you stick in your ear to

hear music, narrow neckties, leisure suits,

laptops, ukeleles, raccoon coats, and overpriced

real estate.

“Never fight the urge to pawn!” K

THE KITTEN Caboodle
 The Official Campus Newspaper of KITTENS University                        S a t u r d a  y   11 : 0 2   a .m  .  G  ro c e ry Shopping Edition   10¢  

PICNIC MANIA— 
THE NEW RAGE
KANSAS: A new fad is sweeping the country.  Everyone is going on picnics. 

This was announced last night on television.  

        News of this great surge in popularity has taken the country by surprise. 

No one here at the Caboodle news center knew picnicking was popular, much

less that it was the newest craze.  (continued on p. 31)

Perfect! thought Fred.  I’m sure that Butter Bottom’s Sack-o-

Picnic Food will do the trick. I don’t want to disappoint Betty and

Alexander.

In a jiffy,  Fred walked to Butter Bottom Foods.  And there at thew

front of the store was a Sack-o-Picnic Food display.  

w In a jiffy (or in a jiff) used to be a common expression meaning “in a very short
period of time.”  Those fun-loving physicists have redefined a jiffy as the time it takes
for light to travel the radius of an electron.   
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                          Chapter One       Systems of Equations with One Solution    Ax = b  (

 $10.20             $2.65         $2.75           

Wow! Fred thought.  They sure make it easy. All I gotta do is
choose a sack, and I’m ready to head off to see Alexander and Betty.

Fred was curious.  He opened the first sack and looked inside. 
There were a can, five bottles, and three jars. 

He took out the can    .  .  .    a bottle    .  .  .    and a jar.

In the first sack, one can, five bottles, and one jar cost $2.65.  

c + 5b + 3j = 2.65

Fred knew, That’s not enough to tell me what each of the items cost.

He opened the second sack.  Two cans, 3 bottles, and 4 jars.

2c + 3b + 4j = 2.75

The third sack: Five cans, 32 bottles, and 3 jars.  Wow. That’s a
lot of Sluice!

5c + 32b + 3j = 10.20

  Butter Bottom’s
Sack-o-Picnic

Food

  Butter Bottom’s
Sack-o-Picnic

Food

  Butter Bottom’s
Sack-o-Picnic

Food
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Intermission

Do your eyes begin to glaze over when you see lines ofequations?  In other words: Are you normal?

Unfortunately, much of linear algebra is about solving

systems of linear equations like those above.  This book has

four main chapters.  The first three chapters deal directly

with solving systems of linear equations:

Chapter One: Systems with One Solution

Chapter Two: Systems with Many Solutions

Chapter Three: Systems with No Solution.

The crux of the matter is that systems of linear

equations keep popping up all the time, especially in

scientific, business, and engineering situations.  

W ho knows?  Maybe even in your love life 

systems of linear equations might be waiting right      

  around the corner as you figure the cost of 6

pizzas, 2 violinists, and 3 buckets of flowers.

With three equations and three unknowns, Fred could use his high
school algebra and solve this system of equations:

9

    c + 5b + 3j = 2.65

    2c + 3b + 4j = 2.75

    5c + 32b + 3j = 10.20

In high school algebra, we were often more comfortable using x, y, and z: 

    

9

    x + 5y + 3z = 2.65

    2x + 3y + 4z = 2.75

    5x + 32y + 3z = 10.20

On the next page is a Your Turn to Play .  Even though this is the
twelfth book in the Life of Fred series, the Your Turn to Play may be new to
some readers.  Let me explain what’s coming.

I, as your reader, would appreciate that.  I hate surprises.

Psychologists say that the best way to really learn something is to

be personally involved in the process.  The Your Turn to Play sections give
you that opportunity.  
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                          Chapter One       Systems of Equations with One Solution    Ax = b  (

The most important point is that you honestly attempt to answer
each of the questions before you look at the solutions.  Please, please,
please, please, please, please, please, please, please, please, please with
sugar on it.  

Your Turn to Play

1.  We might as well start off with the eyes-glaze-over stuff.  Pull out your
old high school algebra book if you need it.  Solve

9

          c + 5b + 3j = 2.65

    2c + 3b + 4j = 2.75  

    5c + 32b + 3j = 10.20

by the “elimination method.”  (The other two methods that you may have
learned are the substitution method—which works best with two equations
and two unknowns—and the graphing method—which, in this case, would
involve drawing three planes on the x-y-z axes and trying to determine the
point of intersection.)  

2.  Since this is linear algebra, we will be solving linear equations.  Which
of these equations are linear?

9x + 3y² = 2

3x + 2xy = 47

7sin x + 3y = –8

5%&x  = 36

3.  Sometimes linear equations might have four variables.  Then they
might be written 3w + 2x + 898y –5z = 7.

But what about in the business world?  In your fountain pen factory,
there might be 26 different varieties of pens.  Then your linear equation
might look like: 2a + 6b + 8c + 9d – 3e – f + 2g + 14h + 4i – 3j + 2k – 11l + 3m + 8n + 20o + 5p + 2q + 3r

+ 9s + 2t + 99u + 3v + 8w + 8x – y + 2z = 98723.  Even then, we might get into a
little trouble with the 11l (eleven “el”) term or the 20o (twenty “oh”) term. 

If you are in real estate, and there are 40 variables involved in
determining the price of a house (e.g., number of bedrooms, size of the lot,
age of the house . . . .), you could stick in some of the Greek letters you
learned in trig: 2a + 6b + 8c + 9d – 3e – f + 2g + . . . + 8w + 8x – y + 2z +
66α – 5β + 2γ + . . . = $384,280.
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                          Chapter One       Systems of Equations with One Solution    Ax = b  (

If you are running an oil refinery, there might be a hundred equations. 
Then you might dip into the Hebrew alphabet (a, b, c ) and the Cyrillic
alphabet (Д, Ж, И).  

One of the major thrusts of linear algebra is to make your life easier. 
Certainly, 6x + 5c – 9 Д + 2ξ = 3 doesn’t look like the way to go.

Can you think of a way out of this mess?

4.  How many solutions does x + y = 15 have?

5.  [Primarily for English majors] What’s wrong with the definition: “A

1 1 2 2 n nlinear equation is any equation of the form a x  + a x  + . . . a x  = b where

ithe a  (for i = 1 to n) and the b are real numbers and n is a natural
number”?  

Recall, the natural numbers are {1, 2, 3, . . .} and they are often
abbreviated by the symbol ù.

Complete Solutions

1.  Now I hope that you hauled out a sheet of paper and attempted this
problem before looking here.  I know it’s easier to just look at my answers
than to do it for yourself.  

And it’s easier to eat that extra slice of pizza than to diet.

  And it’s easier to cheat on your lover than to remain faithful.

    And it’s easier to sit around than to do huffy-puffy exercise.

  But easier can make you fat, divorced, and flabby.

My solution may be different than yours since there are several ways
to attack the problem.  However, our final answers should match.

I’m going to use x, y, and z instead of c, b, and j.  The letter x will
stand for the cost of one can of Picnic Rice™, y will stand for the cost of
one bottle of Sluice™, and z will stand for the cost of a jar of mustard.

    

9

    x + 5y + 3z = 2.65

    2x + 3y + 4z = 2.75

    5x + 32y + 3z = 10.20

If I take the first two equations, multiply the first one by –2, and add
them together I get

–7y – 2z  =  –2.55
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                          Chapter One       Systems of Equations with One Solution    Ax = b  (

If I take the first and third equations, multiply the first one by –5, and
add them together I get

  7y – 12z  =  –3.05

Now I have two equations in two unknowns.  If I add them together I
get one equation in one unknown

–14z  =  –5.60

so z = 0.40 (which means that a jar of mustard costs 40¢).

The last part of the process is to back-substitute.  Putting z = 0.40
into 

  7y – 12z  =  –3.05 

we get   7y – 12(0.40)  =  –3.05

so y = 0.25 (which means that a bottle of Sluice costs 25¢).

Back-substituting z = 0.40 and y = 0.25 into any one of the three original
equations, will give x = 0.20 (so a can of Picnic Rice costs 20¢).  This may
be the last time you ever have to work with all those x’s, y’s, and z’s
(unless, of course, you become a high school math teacher).  As we
progress in linear algebra, the process of solving systems of linear
equations will become easier and easier.  Otherwise, why in the world
would we be studying this stuff?

2.  

9x + 3y² = 2 is not linear because of the y².

3x + 2xy = 47 is not linear because of the 2xy.

7sin x + 3y = –8 is not linear because of the sin x.

5%&x  = 36 is not linear because of the %&x .

3.  The place where we dealt with an arbitrarily large number of variables
was in Life of Fred: Statistics, but you might not remember the Wilcoxon

1 2 3 4Signed Ranks Test in which we had a sample x , x , x , x . . . .  We used
variables with subscripts.  Now it doesn’t make any difference whether we
have three variables or 300.  

And you’ll never have to face 6c – 8Э + 2ψ = 98.3 unless you really
want to.  
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Chapter  Three and a Half          Linear Transformations  T 

÷

÷

÷

÷

T

Handy-Dandy Catalog

of

Linear Transformations

Types Picture Example

Rotate 
each point of R  through an2

angle of θ

when θ = 45º

T( (1, 0) ) 

                                                    %2&       %2&  
= (  , )   1    1  

Dilate
the graph by doubling the
distance from the origin

T( (3, 4) )

=  (6, 8)

Reflect
each point

through an axis

T( (2, 7) ) 

=  (–2, 7)

Project
each point

into a lower dimension

T( (4, 5, 6) )

=  (4, 5)

Take
the derivative

T(4x ) = 28x7 6

Multiply
by a matrix

 T(v)  =  Ax

This chart is true, but it is misleading.  

It’s not misleading because I left out some linear transformations.  

There are approximately 334,901,655 linear transformations that weren’t
mentioned, such as . . .

The donut-hole transformation which takes a
vector space of donuts and turns each vector
into a doughnut hole.  T(v) = 0 for all v. 
Traditional textbooks call this the zero
transformation.
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Chapter  Three and a Half          Linear Transformations  T 

T ÷

T

The leave-it-alone transformation which
maps each vector into itself.  T(v) = v for
every v.  Traditional textbooks call this the
identity transformation.

The integration linear transformation that

          x = 0
3 4 defined by T(v) = I  v dxmaps P  to P 

x

3where v is a polynomial in P .w

Okay.  I, your reader, give up.  What’s so terrible about that
Handy-Dandy Chart you have on the previous page?  You said it was
misleading.  

It is misleading.  Two pages ago I showed that every n×m matrix
could give me a linear transformation.  You give me A, and that will
define T.  

And you even called that a “major class of linear transformations.” 
I’m changing my mind.

Big deal.  We’ll call it a minor class of linear transformations.

No.  No.  No.  We need to go in the other direction.  Every linear
transformation on finite dimensional vector spaces can be represented by a
matrix multiplication.  There is no other type of linear transformation. 
The chart should have looked like:

Handy-Dandy Catalog of All Linear Transformations

Type Picture Example

Multiply
by a matrix

 T(v)  =  Ax every T is an example

x = 0 
w  The multiple roles of x in I v dx  may cause a little consternation.  We have to

x 

integrate with respect to x (the “dx”) because v is a polynomial in x.  That x acts as a
dummy variable.  I would much rather have defined T(v) to equal Iv dx.  The only

problem with that is that T wouldn’t be a function!  The indefinite integral Iv dx

x = 0 
always has an answer with a “+ C” attached.    I v dx  gets rid of the + C problem.

x 
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