Life of Fred Linear Algebra

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

A Note to Classroom Students and Autodidacts

In calculus, there was essentially one new idea. It was the idea of the limit of a function. Using that idea, we defined the derivative and the definite integral. And then we played with that idea for two years of calculus.

In linear algebra, we dip back into high school algebra and begin with the idea of solving a system of linear equations like

$$\begin{cases} 3x + 4y = 18\\ 2x + 5y = 19 \end{cases}$$

and for two or three hours on a Saturday while Fred goes on a picnic, we will play with that idea.

- ✓ We can change the variables: $\begin{cases} 3x_1 + 4x_2 = 18\\ 2x_1 + 5x_2 = 19 \end{cases}$
- \checkmark We can consider three equations and three unknowns.
- ✓ We can look at the coefficient matrix $\begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$

✓ We can consider the case in which the system has exactly one solution (Chapter One), or when it has many solutions (Chapter Two), or when it has no solution (Chapter Three).

✓ Etc.

Of course, the "Etc." covers all the new stuff such as model functions, orthogonal complements, and vector spaces. But they are all just ideas that you might encounter in the Kansas sunshine as you went on a picnic.

Enjoy!

A Note to Teachers

s there some law that math textbooks have to be dreadfully serious and dull? Is there a law that students must be marched through linear algebra shouting out the cadence count Definition, Theorem and Proof, Definition, Theorem and Proof, Definition, Theorem and Proof, as if they were in the army. If there are such laws, then Life of Fred: Linear Algebra is highly illegal.

Besides being illegal, this book is also fattening. Instead of heading outside and going skateboarding, your students will be tempted to curl up with this textbook and read it. In 352 pages, they will read how Fred spent three hours on a Saturday picnic with a couple of his friends. I think that Mary Poppins was right: a spoonful of sugar can make life a little more pleasant.

So your students will be fat and illegally happy.

But what about you, the teacher? Think of it this way: *If your students are eagerly reading about linear algebra, your work is made easier. You can spend more time skateboarding!*

This book contains linear algebra—lots of it. All the standard topics are included. A good solid course stands admixed with the fun. At the end of every chapter are six sets of problems giving the students plenty of practice. Some are easy, and some are like:

If T, T' \in Hom(V, V), and if TT' is the identity homomorphism, then prove that T'T is also the identity homomorphism.

Life of Fred: Linear Algebra also has a logical structure that will make sense to students. The best teaching builds on what the student already knows. In high school algebra they (supposedly) learned how to solve systems of linear equations by several different methods.

The four chapters that form the backbone of this book all deal with systems of linear equations:

Chapter One—Systems with Exactly One Solution Chapter Two—Systems with Many Solutions Chapter Three—Systems with No Solution Chapter Four—Systems Evolving over Time

These chapters allow the students to get their mental meat hooks into the less theoretical material.

Then in the interlarded chapters $(1\frac{1}{2}, 2\frac{1}{2}, 2\frac{3}{4}, 3\frac{1}{2})$ we build on that foundation as we ascend into the more abstract topics of vector spaces, inner product spaces, etc.

Lastly, your students will love you even before they meet you. They will shout for joy in the bookstore when they discover you have adopted a linear algebra textbook that costs only \$49.

Contents

i i i i i i i i i i i i i i i i i i i	1 Systems of Equations with One Solution
I S I I I I I I I I	a 1½ Matrices
f f e i i	 2 Systems of Equations with Many Solutions
	2 ¹ / ₂ Vector Spaces

systems of linear differential equations
Fibonacci numbers
computer programs for linear algebra

Index.		345
--------	--	-----

Chapter One

Systems of Equations with One Solution

Ax = b \odot

Fred had never really been on a lot of picnics in his life. Today was special. Today at noon he was going to meet his two best friends, Betty and Alexander, on the Great Lawn on campus, and they were going to have a picnic.

One good thing about being at KITTENS University^{*} is that just about everything imaginable is either on campus or nearby.

Wait! Stop! I, your loyal reader, need to interrupt. In your old age, dear author, you're getting kind of foggy-brained.

What do you mean?

I'm reading this stuff very carefully, since it's a math book and I have to pay attention to every word. Isn't it obvious that KITTENS would have "just about everything imaginable . . . " since you are doing the imagining?

Good point. I spoke the truth and plead as John Peter Zenger pleaded.**

I accept. Please go on with your story.

Thank you.

Fred knew that food is one important part of a picnic. He picked

up the local newspaper and read . . .

[★] KITTENS University. Kansas Institute for Teaching Technology, Engineering and Natural Sciences.

Background information: Professor Fred Gauss has taught math there for over five years. He is now six years old. Betty and Alexander are students of his. They are both 21.

^{★★} In his Weekly Journal, Zenger criticized the New York governor. Heavens! The government sent him to jail for libel. He had to wait ten months for his trial. At his trial in 1735 he was accused of promoting "an ill opinion of the government." Zenger's defense was that what he had written was true. The judge said that truth is no defense in a libel case. But the jury ignored the judge and set Zenger free. That marked a milestone in American law. Truth then became a legitimate defense in criminal libel suits in America after that trial. In England that idea did not catch on until the 1920s.

Perfect! thought Fred. I 'm sure that Butter Bottom's Sack-o-Picnic Food will do the trick. I don't want to disappoint Betty and Alexander.

In a jiffy,* Fred walked to Butter Bottom Foods. And there at the front of the store was a Sack-o-Picnic Food display.

[\]star In a jiffy (or in a jiff) used to be a common expression meaning "in a very short period of time." Those fun-loving physicists have redefined a *jiffy* as the time it takes for light to travel the radius of an electron.

Wow! Fred thought. They sure make it easy. All I gotta do is choose a sack, and I 'm ready to head off to see Alexander and Betty.

Fred was curious. He opened the first sack and looked inside. There were a can, five bottles, and three jars.

He took out the can . . . a bottle . . . and a jar.

In the first sack, one can, five bottles, and one jar cost \$2.65. c + 5b + 3j = 2.65

Fred knew, That's not enough to tell me what each of the items cost.

He opened the second sack. Two cans, 3 bottles, and 4 jars. 2c + 3b + 4j = 2.75

The third sack: Five cans, 32 bottles, and 3 jars. Wow. That's a lot of Sluice!

$$5c + 32b + 3j = 10.20$$

With three equations and three unknowns, Fred could use his high school algebra and solve this system of equations:

 $\begin{cases} c + 5b + 3j = 2.65\\ 2c + 3b + 4j = 2.75\\ 5c + 32b + 3j = 10.20 \end{cases}$

In high school algebra, we were often more comfortable using x, y, and z:

 $\begin{cases} x + 5y + 3z = 2.65\\ 2x + 3y + 4z = 2.75\\ 5x + 32y + 3z = 10.20 \end{cases}$

Intermission
equations of five the state over when you see lines of
Unfortunately, much of linear algebra is about solving systems of linear equations like those above. This book has four main chapters. The first three chapters deal directly with solving systems of linear equations: Chapter One: Systems with One Solution Chapter Two: Systems with Many Solutions Chapter Three: Systems with No Solution.
The crux of the matter is that systems of linear equations keep popping up all the time, especially in scientific, business, and engineering situations.
Who knows? Maybe even in your love life systems of linear equations might be waiting right around the corner as you figure the cost of 6 pizzas, 2 violinists, and 3 buckets of flowers.

On the next page is a Y our Turn to Play. Even though this is the twelfth book in the *Life of Fred* series, the Y our Turn to Play may be new to some readers. Let me explain what's coming.

I, as your reader, would appreciate that. I hate surprises.

Psychologists say that the best way to really learn something is to

be personally involved in the process. The Y our Turn to Play sections give you that opportunity.

The most important point is that you honestly attempt to answer each of the questions before you look at the solutions. Please, please with sugar on it.

Y our Turn to Play

1. We might as well start off with the eyes-glaze-over stuff. Pull out your old high school algebra book if you need it. Solve

$$c + 5b + 3j = 2.65$$

 $2c + 3b + 4j = 2.75$
 $5c + 32b + 3j = 10.20$

by the "elimination method." (The other two methods that you may have learned are the substitution method—which works best with two equations and two unknowns—and the graphing method—which, in this case, would involve drawing three planes on the x-y-z axes and trying to determine the point of intersection.)

2. Since this is *linear* algebra, we will be solving *linear* equations. Which of these equations are linear?

$$9x + 3y^{2} = 2$$
$$3x + 2xy = 47$$
$$7\sin x + 3y = -8$$
$$5\sqrt{x} = 36$$

3. Sometimes linear equations might have four variables. Then they might be written 3w + 2x + 898y - 5z = 7.

But what about in the business world? In your fountain pen factory, there might be 26 different varieties of pens. Then your linear equation might look like: 2a + 6b + 8c + 9d - 3e - f + 2g + 14h + 4i - 3j + 2k - 11l + 3m + 8n + 200 + 5p + 2q + 3r + 9s + 2t + 99u + 3v + 8w + 8x - y + 2z = 98723. Even then, we might get into a little trouble with the 11l (eleven "el") term or the 200 (twenty "oh") term.

If you are in real estate, and there are 40 variables involved in determining the price of a house (e.g., number of bedrooms, size of the lot, age of the house), you could stick in some of the Greek letters you learned in trig: 2a + 6b + 8c + 9d - 3e - f + 2g + . . . + 8w + 8x - y + 2z + 66 - 5 + 2 + . . . = \$384,280.

If you are running an oil refinery, there might be a hundred equations. Then you might dip into the Hebrew alphabet (a, b, c) and the Cyrillic alphabet (, ,).

One of the major thrusts of linear algebra is to make your life easier. Certainly, 6x + 5c - 9 + 2 = 3 doesn't look like the way to go.

Can you think of a way out of this mess?

4. How many solutions does x + y = 15 have?

5. [Primarily for English majors] What's wrong with the definition: "A linear equation is any equation of the form $a_1x_1 + a_2x_2 + ... a_nx_n = b$ where the a_i (for i = 1 to n) and the b are real numbers and n is a natural number"?

Recall, the natural numbers are $\{1, 2, 3, ...\}$ and they are often abbreviated by the symbol \mathbb{N} .

Complete Solutions

1. Now I hope that you hauled out a sheet of paper and attempted this problem before looking here. I know it's *easier* to just look at my answers than to do it for yourself.

And it's easier to eat that extra slice of pizza than to diet.

And it's easier to cheat on your lover than to remain faithful.

And it's easier to sit around than to do huffy-puffy exercise.

But *easier* can make you fat, divorced, and flabby.

My solution may be different than yours since there are several ways to attack the problem. However, our final answers should match.

I'm going to use x, y, and z instead of c, b, and j. The letter x will stand for the cost of one can of Picnic RiceTM, y will stand for the cost of one bottle of SluiceTM, and z will stand for the cost of a jar of mustard.

 $\begin{cases} x+5y+3z=2.65\\ 2x+3y+4z=2.75\\ 5x+32y+3z=10.20 \end{cases}$

If I take the first two equations, multiply the first one by -2, and add them together I get

-7y - 2z = -2.55

If I take the first and third equations, multiply the first one by -5, and add them together I get

7y - 12z = -3.05

Now I have two equations in two unknowns. If I add them together I get one equation in one unknown

-14z = -5.60

so z = 0.40 (which means that a jar of mustard costs 40ϕ).

The last part of the process is to **back-substitute**. Putting z = 0.40 into

	7y - 12z = -3.05
we get	7y - 12(0.40) = -3.05

so y = 0.25 (which means that a bottle of Sluice costs 25ϕ).

Back-substituting z = 0.40 and y = 0.25 into any one of the three original equations, will give x = 0.20 (so a can of Picnic Rice costs 20ϕ). This may be the last time you ever have to work with all those x's, y's, and z's (unless, of course, you become a high school math teacher). As we progress in linear algebra, the process of solving systems of linear equations will become easier and easier. Otherwise, why in the world would we be studying this stuff?

 $9x + 3y^2 = 2$ is not linear because of the y^2 .3x + 2xy = 47is not linear because of the 2xy. $7\sin x + 3y = -8$ is not linear because of the sin x. $5\sqrt{x} = 36$ is not linear because of the \sqrt{x} .

3. The place where we dealt with an arbitrarily large number of variables was in *Life of Fred: Statistics*, but you might not remember the Wilcoxon Signed Ranks Test in which we had a sample $x_1, x_2, x_3, x_4, \ldots$ We used variables with subscripts. Now it doesn't make any difference whether we have three variables or 300.

And you'll never have to face 6c - 8 + 2 = 98.3 unless you really want to.

Handy-Dandy Catalog of Linear Transformations			
Types	Picture	Example	
Rotate each point of R ² through an angle of		when = 45° T((1, 0)) = $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$	
Dilate the graph by doubling the distance from the origin		T((3, 4)) = (6, 8)	
Reflect each point through an axis		T((2,7)) = (-2,7)	
Project each point into a lower dimension		T((4, 5, 6)) = (4, 5)	
Take the derivative		$T(4x^7) = 28x^6$	
Multiply by a matrix	T(v) = Ax		

Chapter Three and a Half Linear Transformations T

This chart is true, but it is misleading.

It's not misleading because I left out some linear transformations.

There are approximately 334,901,655 linear transformations that weren't mentioned, such as . . .

 \checkmark

The donut-hole transformation which takes a vector space of donuts and turns each vector into a doughnut hole. T(v) = 0 for all v. Traditional textbooks call this the **zero** transformation.

Chapter Three and a Half Linear Transformations T

The leave-it-alone transformation which maps each vector into itself. T(v) = v for every v. Traditional textbooks call this the **identity transformation**.

The integration linear transformation that

maps P_3 to P_4 defined by $T(v) = \int_{x=0}^{x} v dx$ where v is a polynomial in P_3 .*

Okay. I, your reader, give up. What's so terrible about that Handy-Dandy Chart you have on the previous page? You said it was misleading.

It is misleading. Two pages ago I showed that every $n \times m$ matrix could give me a linear transformation. You give me A, and that will define T.

And you even called that a "major class of linear transformations." I'm changing my mind.

Big deal. We'll call it a minor class of linear transformations.

No. No. No. We need to go in the other direction. Every linear transformation on finite dimensional vector spaces can be represented by a matrix multiplication. There is no other type of linear transformation. The chart should have looked like:

Handy-Dandy Catalog of All Linear Transformations			
Туре	Picture	Example	
Multiply by a matrix	T(v) = Ax	every T is an example	

[★] The multiple roles of x in $\int_{x=0}^{x} v \, dx$ may cause a little consternation. We have to integrate with respect to x (the "dx") because **v** is a polynomial in x. That x acts as a dummy variable. I would much rather have defined T(v) to equal $\int v \, dx$. The only problem with that is that T wouldn't be a function! The indefinite integral $\int v \, dx$ always has an answer with a "+ C" attached. $\int_{x=0}^{x} v \, dx$ gets rid of the + C problem.

<i>a fortiori</i> 280
a posteriori
a priori
absorbing state 325
abstract algebra 125
abelian group 125
field 125
group 125
groupoid 125
module 128
monoid 125
ring 125
semigroup 125
algebraic multiplicity
augmented matrix
back-substitution 19, 34
basis157
best possible answer 226-228
binary operation 133
cancellation 128, 129
catalog of linear transformations 257
characteristic equation
characteristic polynomial 304
characteristic value
characteristic vector
cheeses from A to C
Chop Down theorem 163
closed under addition 132

diagonalize a matrix
differential equations 328, 329
boundary point conditions 331
general solution
initial conditions
particular solution
dimension of a matrix 105
distinguished element 96
dot product
double Fourier series
doubly-augmented matrix 31
dual space 270
echelon form
eigenvalues
eigenvector
elementary column operations 172
elementary matrices 69
elementary row operations 22
elimination method 17
even function
Explosive theorem 174
Fibonacci numbers
Fill 'er Up theorem 164
fixed probability vector 324
forward-substitution
Fourier series 208-211
free variable
function 121, 286
codomain
domain
image121
range
Gauss-Jordan elimination 22
how long it takes

Gaussian elimination 35
how long it takes
general solution
geometric multiplicity 312
Goldbach conjecture 242
golden ratio 335
golden rectangle
Gram-Schmidt orthogonalization
process 201-204
proof 204, 205
Handy Facts (determinants) 300, 301
Handy Guide to Dating Systems of
Linear Equations 107
hanging the vines 312
harmonic analysis 210
$Hom(V,W).\dots\dots 266$
homogeneous 101
i , j , and k
identity element 65
identity matrix 61
identity transformation
iff
infinite dimensional vector spaces
inner product 191
of polynomials 193, 194
of two continuous real-valued
functions 196, 197
inner product space 193
for complex scalars 218
of all $m \times n$ matrices 213-217
inverse matrix
to compute 61
to solve $Ax = b$
inverses

invertible matrices 117
isomorphic 136
Kronecker delta
latent root
latent vector 318
leading variables
least squares solution
linear combination 138, 139
linear equations 17, 20
linear functional
linear mappings 250
linear operator 250
linear transformation 249, 250
multiplying 284
linearly dependent
logically equivalent 104
lower triangular
lower-upper matrix decomposition 74
LU-decomposition
Markov chain
Markov chain
matrix
matrix addition 49
matrix addition
matrix addition
matrixaddition.49definition.21diagonal.86equal matrices.62expanded definition.48identity matrix.61inverse matrix.60multiplication.53
matrixaddition.49definition.21diagonal.86equal matrices.62expanded definition.48identity matrix.61inverse matrix.60multiplication.53reduced row-echelon.96
matrixaddition.49definition.21diagonal.86equal matrices.62expanded definition.48identity matrix.61inverse matrix.60multiplication.53reduced row-echelon.96row-equivalent.64

matrix multiplication
associative 64
associative (proof) 65-67
Mean Value Theorem
model function
mutatis mutandis 160
n-tuples
Nice theorem 160
Nightmare #1: There is a zero on the
diagonal 91
Nightmare #2: Zeros all the way down
Nightmare #3: Zeros to the right 92
Nightmare #4: A row with all zeros
except for the last column 93
Nine Steps to Compute a Power of a
Matrix 304
algebraic multiplicity of two 306
characteristic equation 304
characteristic polynomial 304
D 314
diagonalize a matrix 315
eigenvalues 305
eigenvector 306
geometric multiplicity 312
P 312
"hanging the vines." 312
nonsingular matrices 117
norm of a vector
normal equation
null space
nullity
ordered basis 255
orthogonal complement 220

orthogonal vectors 199, 207
linearly independent 201
parameter
permutation matrix
perp 220
pigeonhole principle
pivot variables
positive matrix 184
Positive-definiteness 191
Prof. Eldwood's Authoritative Guide to
the Polite Way 71
Professor Eldwood's Guide to Happy
<i>Picnics</i>
Professor Eldwood's History and What
<i>It's Good For</i>
Professor Eldwood's Inkbook 111
Professor Eldwood's Lions in the Great
Woods of Kansas 290
Woods of Kansas 290
Woods of Kansas. 290 projection. 253
Woods of Kansas. 290 projection. 253 proper value. 318
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables185
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables185reduced row-echelon form.26, 27, 96
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables185reduced row-echelon form.26, 27, 96regular stochastic matrix.324
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables185reduced row-echelon form.26, 27, 96
Woods of Kansas. 290 projection. 253 proper value. 318 proper vector. 318 rank of a matrix. 102 equals number of pivot variables 185 reduced row-echelon form. 26, 27, 96 regular stochastic matrix. 324 row. 21 row space. 171
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables185reduced row-echelon form.26, 27, 96regular stochastic matrix.324row.21
Woods of Kansas. 290 projection. 253 proper value. 318 proper vector. 318 rank of a matrix. 102 equals number of pivot variables 185 reduced row-echelon form. 26, 27, 96 regular stochastic matrix. 324 row. 21 row space. 171
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables185reduced row-echelon form.26, 27, 96regular stochastic matrix.324row.21row space.171row vectors linearly dependent when
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables185reduced row-echelon form.26, 27, 96regular stochastic matrix.324row.21row space.171row vectors linearly dependent when153
Woods of Kansas.290projection.253proper value.318proper vector.318rank of a matrix.102equals number of pivot variables185reduced row-echelon form.26, 27, 96regular stochastic matrix.324row.21row space.171row vectors linearly dependent when153New Quicker Summary.155

scalar multiplication 50, 121, 124,
127
scalars
second dual 275
similar matrices 327
singleton 145
singular matrices 102
span 142, 143
spanning set
stationary vector
steady state vector
stochastic matrices 321
regular 324
subscriptsmanship
subspace
subspace theorems 167
trace of a matrix
transition matrix
trivial solution 154
underdetermined linear system 43
unit vectors
unit-upper-triangular
upper triangular
variables
continuous
discrete 224
vector
angle between two vectors 195
length 195
perpendicular
unit
zero vector
vector addition 123
definition

vector space
definition
vector space homomorphisms 250
well-defined operations 133
whole numbers
Zenger, John Peter 13
zero matrix
zero subspace
zero transformation 257
zero vector space 183

If you'd like to visit Fred at his official Web site and see what other books have been written about him

FredGauss.com