L ifeof F red L inear A Igebra

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

A N ote to C lassroom S tudents and A utodidacts

In calculus, there was essentially one new idea. It was the idea of the limit of a function. Using that idea, we defined the derivative and the definite integral. And then we played with that idea for two years of calculus.

In linear algebra, we dip back into high school algebra and begin with the idea of solving a system of linear equations like

$$
\left\{\begin{array}{l}
3 x+4 y=18 \\
2 x+5 y=19
\end{array}\right.
$$

and for two or three hours on a Saturday while Fred goes on a picnic, we will play with that idea.
\checkmark We can change the variables: $\left\{\begin{array}{l}3 x_{1}+4 x_{2}=18 \\ 2 x_{1}+5 x_{2}=19\end{array}\right.$
\checkmark We can consider three equations and three unknowns.
\checkmark We can look at the coefficient matrix $\left(\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right)$
\checkmark We can consider the case in which the system has exactly one solution (Chapter One), or when it has many solutions (Chapter Two), or when it has no solution (Chapter Three).
\checkmark Etc.

Of course, the "Etc." covers all the new stuff such as model functions, orthogonal complements, and vector spaces. But they are all just ideas that you might encounter in the Kansas sunshine as you went on a picnic.

Enjoy!

A N oteto T eachers

Is there some law that math textbooks have to be dreadfully serious and dull? Is there a law that students must be marched through linear
—algebra shouting out the cadence count Definition, Theorem and Proof, Definition, Theorem and Proof,
Definition, Theorem and Proof, Definition, Theorem and Proof, as if they were in the army. If there are such laws, then Life of Fred: Linear Algebra is highly illegal.

Besides being illegal, this book is also fattening. Instead of heading outside and going skateboarding, your students will be tempted to curl up with this textbook and read it. In 352 pages, they will read how Fred spent three hours on a Saturday picnic with a couple of his friends. I think that Mary Poppins was right: a spoonful of sugar can make life a little more pleasant.

So your students will be fat and illegally happy.
But what about you, the teacher? Think of it this way: If your students are eagerly reading about linear algebra, your work is made easier. You can spend more time skateboarding!

This book contains linear algebra-lots of it. All the standard topics are included. A good solid course stands admixed with the fun.

At the end of every chapter are six sets of problems giving the students plenty of practice. Some are easy, and some are like:

If $T, T^{\prime} \in \operatorname{Hom}(V, V)$, and if T^{\prime} is the identity homomorphism, then prove that $\mathrm{T}^{\prime} \mathrm{T}$ is also the identity homomorphism.

Life of Fred: Linear Algebra also has a logical structure that will make sense to students. The best teaching builds on what the student already knows. In high school algebra they (supposedly) learned how to solve systems of linear equations by several different methods.

The four chapters that form the backbone of this book all deal with systems of linear equations:

> Chapter One-Systems with Exactly One Solution
> Chapter Two-Systems with Many Solutions
> Chapter Three-Systems with No Solution
> Chapter Four-Systems Evolving over Time

These chapters allow the students to get their mental meat hooks into the less theoretical material.

Then in the interlarded chapters $\left(1^{11 / 2}, 2^{112}, 2^{3} / 4,31 / 2\right)$ we build on that foundation as we ascend into the more abstract topics of vector spaces, inner product spaces, etc.

Lastly, your students will love you even before they meet you. They will shout for joy in the bookstore when they discover you have adopted a linear algebra textbook that costs only $\$ 49$.

Contents

Chapter 1 Systems of Equations with One Solution. 13
high school algebra, three equations with three unknowns
coefficient and augmented matrices
elementary row operations
Gauss-Jordan elimination
Gaussian elimination
Chapter $11 / 2$ Matrices. 47
matrix addition $A+B$
scalar multiplication rA
matrix multiplication $A B$
matrix inverse A^{-1}
proof of associative law of matrix multiplication $(A B) C=A(B C)$
elementary matrices
$L U$-decomposition
permutation matrices
Chapter 2 Systems of Equations with Many Solutions. 89
four difficulties with Gauss-Jordan elimination
\#1: a zero on the diagonal\#2: zeros "looking south"\#3: zeros "looking east"\#4: a row with all zeros except for the last column
free variables
echelon and reduced row-echelon matrices
general solutions
homogeneous systems
rank of a matrix
Chapter $21 / 2$ Vector Spaces. 120
four properties of vector addition
a very short course in abstract algebrafour properties of scalar multiplication
five vector spaces
linear combinations and spanning sets
linear dependence/independence
basis for a vector space
coordinates with respect to a basis
dimension of a vector space
subspace of a vector space
row space, column space, null space, and nullity
Chapter 23/4 Inner Product Spaces 187
dot product
inner product
positive-definiteness
length of a vector (norm of a vector)
angle between two vectors
perpendicular vectors (orthogonality)
Gram-Schmidt orthogonalization process
orthonormal sets
Fourier series
harmonic analysis
double Fourier series
complex vector spaces with an inner product
orthogonal complements
Chapter 3 Systems of Equations with No Solution. 221
overdetermined/underdetermined systems
discrete/continuous variables
the normal equation/"the best possible answer"
least squares solution
data fitting
model functions
Chapter 3½ Linear Transformations. 247
rotation, reflection, dilation, projection, derivatives, matrix multiplication
linear transformations, linear mappings, vector space homomorphisms
linear operators
ordered bases
zero transformation, identity transformation
the equivalence of linear transformations and matrix multiplication
$\operatorname{Hom}(V, W)$
linear functionals
dual spaces
second dual of V.
Chapter 4 Systems of Equations into the Future A^{100}. 289
transition matrix
determinants
characteristic polynomial/characteristic equation
eigenvalues
algebraic multiplicity/geometric multiplicity
computation of A^{100}
stochastic matrices
Markov chains
steady state vectors
regular matrices
absorbing states
similar matrices
systems of linear differential equations
Fibonacci numbers
computer programs for linear algebra
Index. 345

Chapter 0 ne
 S ystems of E quations with 0 ne S olution
 $\mathrm{Ax}=\mathrm{b}$ ©

Fred had never really been on a lot of picnics in his life. Today was special. Today at noon he was going to meet his two best friends, Betty and Alexander, on the Great Lawn on campus, and they were going to have a picnic.

One good thing about being at KITTENS University* is that just about everything imaginable is either on campus or nearby.

Wait! Stop! I, your loyal reader, need to interrupt. In your old age, dear author, you're getting kind of foggy-brained.

What do you mean?
I'm reading this stuff very carefully, since it's a math book and I have to pay attention to every word. Isn't it obvious that KITTENS would have "just about everything imaginable . . ." since you are doing the imagining?

Good point. I spoke the truth and plead as John Peter Zenger pleaded.**

I accept. Please go on with your story.
Thank you.
Fred knew that food is one important part of a picnic. He picked up the local newspaper and read...

* KITTENS University. Kansas Institute for Teaching Technology, Engineering and Natural Sciences.

Background information: Professor Fred Gauss has taught math there for over five years. He is now six years old. Betty and Alexander are students of his. They are both 21 .
** In his Weekly Journal, Zenger criticized the New York governor. Heavens! The government sent him to jail for libel. He had to wait ten months for his trial. At his trial in 1735 he was accused of promoting "an ill opinion of the government."
Zenger's defense was that what he had written was true. The judge said that truth is no defense in a libel case. But the jury ignored the judge and set Zenger free. That marked a milestone in American law. Truth then became a legitimate defense in criminal libel suits in America after that trial. In England that idea did not catch on until the 1920s.

THE KITTEN Caboodle

The Official Campus N ew spaper of KITTENS University
Saturday 11:02 a.m. Grocery Shopping Edition 10 d

PICNIC MANIATHE NEW RAGE

KANSAS: A new fad is sweeping the country. Everyone is going on picnics. This was announced last night on television.

News of this great surge in popularity has taken the country by surprise.

"We must picnic," our university president declared in an exclusive Caboodle interview. No one here at the Caboodle news center knew picnicking was popular, much less that it was the newest craze. (continued on p. 31)

Perfect! thought Fred. I 'm sure that B utter B ottom's S ack- oPicnic Food will do the trick. I don't want to disappoint Betty and A lexander.

In a jiffy, ${ }^{*}$ Fred walked to Butter Bottom Foods. And there at the front of the store was a Sack-o-Picnic Food display.

[^0]

Wow! Fred thought. T hey sure make it easy. All I gotta do is choose a sack, and I 'm ready to head off to see A lexander and B etty.

Fred was curious. He opened the first sack and looked inside. There were a can, five bottles, and three jars.

He took out the can . . a bottle . . . and a jar.

In the first sack, one can, five bottles, and one jar cost $\$ 2.65$.

$$
c+5 b+3 j=2.65
$$

Fred knew, T hat's not enough to tell me what each of the items cost.

He opened the second sack. Two cans, 3 bottles, and 4 jars.

$$
2 c+3 b+4 j=2.75
$$

The third sack: Five cans, 32 bottles, and 3 jars. Wow. T hat's a lot of Sluice!

$$
5 c+32 b+3 j=10.20
$$

With three equations and three unknowns, Fred could use his high school algebra and solve this system of equations:

$$
\left\{\begin{array}{c}
c+5 b+3 j=2.65 \\
2 c+3 b+4 j=2.75 \\
5 c+32 b+3 j=10.20
\end{array}\right.
$$

In high school algebra, we were often more comfortable using x, y, and z :

$$
\left\{\begin{array}{c}
x+5 y+3 z=2.65 \\
2 x+3 y+4 z=2.75 \\
5 x+32 y+3 z=10.20
\end{array}\right.
$$

On the next page is a Y our T urn to P lay. Even though this is the twelfth book in the Life of Fred series, the Y our T urn to P lay may be new to some readers. Let me explain what's coming.

I, as your reader, would appreciate that. I hate surprises.
Psychologists say that the best way to really learn something is to be personally involved in the process. The Y our T urnto P lay sections give you that opportunity.

Chapter 0 ne S ystems of E quations with 0 neS olution $\quad \mathrm{Ax}=\mathrm{b} \odot$

The most important point is that you honestly attempt to answer each of the questions before you look at the solutions. Please, please with sugar on it.

Y our T urn to P lay

1. We might as well start off with the eyes-glaze-over stuff. Pull out your old high school algebra book if you need it. Solve

$$
\left\{\begin{array}{c}
c+5 b+3 j=2.65 \\
2 c+3 b+4 j=2.75 \\
5 c+32 b+3 j=10.20
\end{array}\right.
$$

by the "elimination method." (The other two methods that you may have learned are the substitution method-which works best with two equations and two unknowns-and the graphing method-which, in this case, would involve drawing three planes on the $x-y-z$ axes and trying to determine the point of intersection.)
2. Since this is linear algebra, we will be solving linear equations. Which of these equations are linear?

$$
\begin{aligned}
& 9 x+3 y^{2}=2 \\
& 3 x+2 x y=47 \\
& 7 \sin x+3 y=-8 \\
& 5 \sqrt{x}=36
\end{aligned}
$$

3. Sometimes linear equations might have four variables. Then they might be written $3 \mathrm{w}+2 \mathrm{x}+898 \mathrm{y}-5 \mathrm{z}=7$.

But what about in the business world? In your fountain pen factory, there might be 26 different varieties of pens. Then your linear equation might look like: $2 \mathrm{a}+6 \mathrm{~b}+8 \mathrm{c}+9 \mathrm{~d}-3 \mathrm{e}-\mathrm{f}+2 \mathrm{~g}+14 \mathrm{~h}+4 \mathrm{i}-3 \mathrm{j}+2 \mathrm{k}-111+3 \mathrm{~m}+8 \mathrm{n}+20 \mathrm{o}+5 \mathrm{p}+2 \mathrm{q}+3 \mathrm{r}$ $+9 s+2 t+99 u+3 v+8 w+8 x-y+2 z=98723$. Even then, we might get into a little trouble with the 111 (eleven "el") term or the 20 (twenty "oh") term.

If you are in real estate, and there are 40 variables involved in determining the price of a house (e.g., number of bedrooms, size of the lot, age of the house), you could stick in some of the Greek letters you learned in trig: $2 a+6 b+8 c+9 d-3 e-f+2 g+\ldots+8 w+8 x-y+2 z+$ $66 \alpha-5 \beta+2 \gamma+\ldots=\$ 384,280$.

Chapter 0 ne $\quad S$ ystems of E quations with 0 neS olution $\quad \mathrm{Ax}=\mathrm{b} \odot$

If you are running an oil refinery, there might be a hundred equations. Then you might dip into the Hebrew alphabet (a, b, c) and the Cyrillic alphabet (Д, Ж, И).

One of the major thrusts of linear algebra is to make your life easier. Certainly, $6 \mathrm{x}+5$ c -9 Д $+2 \xi=3$ doesn't look like the way to go.

Can you think of a way out of this mess?
4. How many solutions does $x+y=15$ have?
5. [Primarily for English majors] What's wrong with the definition: "A linear equation is any equation of the form $a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=b$ where the a_{i} (for $i=1$ to n) and the b are real numbers and n is a natural number"?

Recall, the natural numbers are $\{1,2,3, \ldots\}$ and they are often abbreviated by the symbol \mathbb{N}.

$$
\begin{array}{lllllllllllllllllll}
C & o & m & p & \text { io } & \text { io } & \text { n }
\end{array}
$$

1. Now I hope that you hauled out a sheet of paper and attempted this problem before looking here. I know it's easier to just look at my answers than to do it for yourself.

And it's easier to eat that extra slice of pizza than to diet.
And it's easier to cheat on your lover than to remain faithful.
And it's easier to sit around than to do huffy-puffy exercise.
But easier can make you fat, divorced, and flabby.
My solution may be different than yours since there are several ways to attack the problem. However, our final answers should match.

I'm going to use x, y, and z instead of c, b, and j . The letter x will stand for the cost of one can of Picnic Rice ${ }^{\mathrm{TM}}$, y will stand for the cost of one bottle of Sluice ${ }^{\mathrm{TM}}$, and z will stand for the cost of a jar of mustard.

$$
\left\{\begin{array}{c}
x+5 y+3 z=2.65 \\
2 x+3 y+4 z=2.75 \\
5 x+32 y+3 z=10.20
\end{array}\right.
$$

If I take the first two equations, multiply the first one by -2 , and add them together I get

$$
-7 y-2 z=-2.55
$$

Chapter 0 ne S ystems of E quations with 0 ne S olution $A x=b \odot$

If I take the first and third equations, multiply the first one by -5 , and add them together I get

$$
7 y-12 z=-3.05
$$

Now I have two equations in two unknowns. If I add them together I get one equation in one unknown

$$
-14 z=-5.60
$$

so $\mathrm{z}=0.40$ (which means that a jar of mustard costs $40 \notin$).

The last part of the process is to back-substitute. Putting $\mathrm{z}=0.40$ into

$$
7 y-12 z=-3.05
$$

we get $\quad 7 y-12(0.40)=-3.05$ so $y=0.25$ (which means that a bottle of Sluice costs 25ϕ).

Back-substituting $\mathrm{z}=0.40$ and $\mathrm{y}=0.25$ into any one of the three original equations, will give $x=0.20$ (so a can of Picnic Rice costs 20ϕ). This may be the last time you ever have to work with all those x's, y's, and z's (unless, of course, you become a high school math teacher). As we progress in linear algebra, the process of solving systems of linear equations will become easier and easier. Otherwise, why in the world would we be studying this stuff?
2.
$9 x+3 y^{2}=2 \quad$ is not linear because of the y^{2}.
$3 x+2 x y=47 \quad$ is not linear because of the $2 x y$.
$7 \sin x+3 y=-8 \quad$ is not linear because of the $\sin x$.
$5 \sqrt{x}=36 \quad$ is not linear because of the \sqrt{x}.
3. The place where we dealt with an arbitrarily large number of variables was in Life of Fred: Statistics, but you might not remember the Wilcoxon Signed Ranks Test in which we had a sample $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \ldots$. We used variables with subscripts. Now it doesn't make any difference whether we have three variables or 300.

And you'll never have to face $6 \mathrm{c}-8 Э+2 \psi=98.3$ unless you really want to.

Chapter Three and a H alf L inear T ransformations T
$\left.\begin{array}{||c|c|c||}\hline & \begin{array}{c}\text { Handy-Dandy Catalog } \\ \text { of }\end{array} \\ \text { Linear Transformations }\end{array}\right]$

This chart is true, but it is misleading. It's not misleading because I left out some linear transformations.

There are approximately $334,901,655$ linear transformations that weren't mentioned, such as . . .

The donut-hole transformation which takes a vector space of donuts and turns each vector into a doughnut hole. $\mathrm{T}(\mathrm{v})=0$ for all v . Traditional textbooks call this the zero transformation.

Chapter Threeand a H alf L inear T ransformations T

The leave-it-alone transformation which maps each vector into itself. $T(v)=v$ for every v. Traditional textbooks call this the
 identity transformation.

The integration linear transformation that
maps P_{3} to P_{4} defined by $T(v)=\int_{x=0}^{x} v d x$ where V is a polynomial in P

Okay. I, your reader, give up. What's so terrible about that Handy-Dandy Chart you have on the previous page? You said it was misleading.

It is misleading. Two pages ago I showed that every $n \times m$ matrix could give me a linear transformation. You give me A, and that will define T .

And you even called that a "major class of linear transformations."
I'm changing my mind.
Big deal. We'll call it a minor class of linear transformations.
No. No. No. We need to go in the other direction. Every linear transformation on finite dimensional vector spaces can be represented by a matrix multiplication. There is no other type of linear transformation. The chart should have looked like:

Handy-Dandy Catalog of All Linear Transformations		
Type	Picture	Example
Multiply by a matrix	$\mathrm{T}(\mathrm{v})=\mathrm{Ax}$	every T is an example

[^1]a fortiori 280
a posteriori. 281
a priori 280
absorbing state 325
abstract algebra 125
abelian group 125
field. 125
group. 125
groupoid. 125
module. 128
monoid. 125
ring 125
semigroup 125
algebraic multiplicity 306
augmented matrix. 21
back-substitution 19, 34
basis. 157
best possible answer 226-228
binary operation. 133
cancellation 128, 129
catalog of linear transformations. 257
characteristic equation. 304
characteristic polynomial 304
characteristic value. 318
characteristic vector 318
cheeses from A to C 168
Chop Down theorem 163
closed under addition 132closed under vector addition and scalarmultiplication.167
coefficient matrix 21
column. 23
column space. 172
column-rank 175
complex conjugate 218
complex inner product space. 218
computer programs for linear algebra338
consistent systems of equations 111
contrapositive 104
converse. 104
conversion factors. 299
coordinates of a vector with respect to a
basis 159
Cramer's Rule. 296
data fitting 232
determinants
$|\mathrm{AB}|=|\mathrm{A}||\mathrm{B}|$. 301
1×1 299
2×2. 296
3×3. 297
4×4 (or higher) 298
an overview 296-303
cofactor. 298
expansion by minors. 297
hairnet. 297
handy facts. 300, 301
interchange any two rows 300
multiply a row by a scalar 300
row of zeros 300
upper triangular. 300
diagonal. 24
ndex
diagonalize a matrix. 315
differential equations. 328, 329
boundary point conditions. 331
general solution. 331
initial conditions. 331
particular solution 331
dimension of a matrix 105
distinguished element. 96
dot product. 189
double Fourier series. 211
doubly-augmented matrix 31
dual space. 270
echelon form. 96
eigenvalues. 305
eigenvector. 306
elementary column operations. 172
elementary matrices. 69
elementary row operations. 22
elimination method. 17
even function. 192
Explosive theorem. 174
Fibonacci numbers. 335
Fill 'er Up theorem. 164
fixed probability vector 324
forward-substitution 77
Fourier series. 208-211
free variable 95, 105
function. 121,286
codomain. 121
domain. 121
image. 121
range. 121
Gauss-Jordan elimination. 22
how long it takes.. 35
Gaussian elimination. 35
how long it takes 35
general solution. 98
geometric multiplicity 312
Goldbach conjecture. 242
golden ratio. 335
golden rectangle 335
Gram-Schmidt orthogonalization201-204
proof. 204, 205
Handy Facts (determinants) 300, 301
Handy Guide to Dating Systems of
Linear Equations. 107
hanging the vines. 312
harmonic analysis. 210
$\operatorname{Hom}(V, W)$. 266
homogeneous. 101
\mathbf{i}, \mathbf{j}, and \mathbf{k}. 142
identity element. 65
identity matrix. 61
identity transformation. 258
iff. 65
infinite dimensional vector spaces160
inner product. 191
of polynomials. 193, 194
of two continuous real-valued
functions.196, 197
inner product space 193
for complex scalars. 218
of all $m \times n$ matrices. 213-217
inverse matrix
to compute. 61
to solve $\mathrm{Ax}=\mathrm{b}$ 60
inverses. 104
ndex
invertible matrices 117
isomorphic. 136
Kronecker delta 86
latent root 318
latent vector 318
leading variables. 96
least squares solution. 228
linear combination 138, 139
linear equations. 17, 20
linear functional. 269
linear mappings. 250
linear operator. 250
linear transformation. 249, 250
multiplying. 284
linearly dependent 144
logically equivalent. 104
lower triangular. 44
lower-upper matrix decomposition. 74
$L U$-decomposition. 74
Markov chain. 321
matrix
addition. 49
definition 21
diagonal. 86
equal matrices 62
expanded definition. 48
identity matrix. 61
inverse matrix 60
multiplication. 53
reduced row-echelon. 96
row-equivalent. 64
singular. 101, 102
subtraction. 81
transpose. 93
matrix multiplication associative. 64
associative (proof). 65-67
Mean Value Theorem 187
model function. 235
mutatis mutandis 160
n-tuples 136
Nice theorem. 160
Nightmare \#1: There is a zero on the diagonal 91
Nightmare \#2: Zeros all the way down91
Nightmare \#3: Zeros to the right. 92
Nightmare \#4: A row with all zeros except for the last column 93
Nine Steps to Compute a Power of aMatrix304
algebraic multiplicity of two. 306
characteristic equation. 304
characteristic polynomial. 304
D. 314
diagonalize a matrix 315
eigenvalues 305
eigenvector 306
geometric multiplicity 312
P 312
"hanging the vines." 312
nonsingular matrices 117
norm of a vector. 196
normal equation. 224, 225
null space. 186
nullity 186
ordered basis. 255
orthogonal complement. 220

ndex	
orthogonal vectors. 199, 207	scalar multiplication. . . . 50, 121, 124,
linearly independent. 201	127
parameter. 98	scalars. 50
permutation matrix. 81	second dual. 275
perp.. 220	similar matrices.. 327
pigeonhole principle. 267	singleton. 145
pivot variables.. 96	singular matrices.. 102
positive matrix. 184	span. 142, 143
Positive-definiteness. 191	spanning set. 143
Prof. Eldwood's Authoritative Guide to	stationary vector. 324
the Polite Way... 71	steady state vector.. 321
Professor Eldwood's Guide to Happy	stochastic matrices. 321
Picnics. 48	regular. 324
Professor Eldwood's History and What	subscriptsmanship.. 57
It's Good For. 38	subspace. 166
Professor Eldwood's Inkbook. 111	subspace theorems. 167
Professor Eldwood's Lions in the Great	trace of a matrix. 217
Woods of Kansas. 290	transition matrix. 291
projection. 253	trivial solution.. 154
proper value. 318	underdetermined linear system. 43
proper vector.. 318	unit vectors. 207
rank of a matrix.. 102	unit-upper-triangular. 74
equals number of pivot variables	upper triangular.. 37
185	variables
reduced row-echelon form. . . 26, 27, 96	continuous. 224
regular stochastic matrix. 324	discrete. 224
row. 21	vector. 32, 48, 121
row space. 171	angle between two vectors. . . . 195
row vectors linearly dependent when . .	length. 195
Handy Summary.. 153	perpendicular. 195
New Quicker Summary. 155	unit. 207
row vectors span a space if. .	zero vector. 130
Handy Summary.. 153	vector addition. 123
New Quicker Summary. 155	definition. 124

If you'd like to visit F red at his official W eb site and see what other books have been written about him FredGauss.com

[^0]: * In a jiffy (or in a jiff) used to be a common expression meaning "in a very short period of time." Those fun-loving physicists have redefined a jiffy as the time it takes for light to travel the radius of an electron.

[^1]: * The multiple roles of x in $\int_{x=0}^{x} v d x$ may cause a little consternation. We have to integrate with respect to x (the " $d x$ ") because \mathbf{V} is a polynomial in x. That x acts as a dummy variable. I would much rather have defined $T(v)$ to equal $\int \mathbf{v} d x$. The only problem with that is that T wouldn't be a function! The indefinite integral $\int \mathbf{v} d x$ always has an answer with a " +C " attached. $\int_{x=0}^{x} v d x$ gets rid of the $+C$ problem.

